> Don Mikulecky replies:
>
> yes your notation for Cartesian Product is clearer
>
> you will note that all my sets in the definition I used from Arbib's
> category theory are FINITE. Clealy, continuous intervals must be dealt with
> differently. This is more an issue of representation than a new conclusion
> as I see it. Am I missing something?
> Don
Actually, I have second intentions on proposing such derivations from finite
(discrete) to continuous. My point is ... if they are not MACHINES, then what
are they ? Maybe ... complex systems ? Or, if not complex systems, then what ?
Ricardo
--
//\\\
(o o)
+-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-oOO--(_)--OOo-=-=-+
\ Prof. Ricardo Ribeiro Gudwin /
/ Intelligent Systems Development Group \
\ DCA - FEEC - UNICAMP | INTERNET /
/ Caixa Postal 6101 | gudwin@dca.fee.unicamp.br \
\ 13081-970 Campinas, SP | gudwin@fee.unicamp.br /
/ BRAZIL | gudwin@correionet.com.br \
+-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-+
\ URL: http://www.dca.fee.unicamp.br/~gudwin/ /
/ Telephones: +55 (19) 788-3819 DCA/Unicamp (University) \
\ +55 (19) 254-0184 Residencia (Home) /
/ FAX: +55 (19) 289-1395 \
+-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-+