
System Farming

Bruce Edmonds

Centre for Policy Modelling, Manchester Metropolitan University

bruce@edmonds.name

Abstract

We discuss the implications of emergence and

complexity for the management of complex distributed

systems (CDS). We argue that while formal design

methods may play a role, they have distinct limitations

where it comes to complex systems. There are similar

limitations to statistical methods. Thus we must look to

other ways of managing these systems, involving a shift

from: prior one-off design towards post hoc continual

management; from predictive abstract theory towards

detailed descriptive modelling to guide monitoring and

aid diagnosis; from system optimisation to simple

disaster prevention; from single models to many

models; from single well-designed mechanisms to

multiple overlapping mechanisms; from individual to

collective effort. We call upon those in the SASO

community to explicitly reject those tenets that are only

useful with simple systems. In other words, when

trying to understand CDS, become more like zoologists

rather than mathematicians and when managing them

becoming more like farmers than engineers (at least in

the classic sense).

1. Introduction

Consider farmers. They may know their animals,

crops and land in some detail, but are under no illusion

that designing a farm in advance would contribute

more than a small part to its success. Rather they

understand that they have to be acting upon it

constantly to try and get acceptable results – less an

exercise in careful planning than disaster avoidance

using constant monitoring and mundane maintenance.

In such a situation, new ideas cannot be assessed on the

grounds of reason and plausibility alone (even those

suggested by scientific advisors) but have to be tried

out in situ. Solutions are almost never permanent and

universal but rather a series of tactics that work for

different periods of time in particular circumstances.

Techniques that are seen to provide real benefit (even if

that benefit is marginal) are adopted by others nearby

so that, in the longer run, a community of specific and

local practices evolve. This paper suggests that in order

to effectively manage complex distributed systems

(CDS) we have to learn to be more like farmers and

less like mathematicians or engineers (in the classic

sense).

This is a difficult lesson to adsorb. As computer

scientists we are taught the value of good design –

constructing the system sufficiently carefully so that we

know that it will work well once built. That bugs are

bad and we can limit them by carful specification and

implementation. However CDS may not be very

amenable to such an approach, requiring considerable

and continual post construction adaption where the

system is only ever partially understood. Here bugs

may not only be inevitable, but the very things that

make the CDS „work‟. In other words learn to “farm”

the systems that we need – system farming.

The argument proceeds as follows: Section 2 makes

clear what we mean by the ideas of syntactic

complexity, unpredictability and emergence, arguing

that emergent phenomena cannot be formally reduced

to system properties; ... in Section 6 calling on the

SASO community to explicitly reject approaches that

only work for simple systems.

2. Unpredictability and emergence

In this section we discuss and define

unpredictability, complexity and emergence w.r.t. CDS.

In particular, we want to show that: just because a

particular emergent feature is caused by the

mechanisms and set-up of a CDS and that each micro-

step is completely understandable in a deterministic

way, this does not mean that the emergent feature is

reducible to the mechanisms and set-up. It may be that

the assumption that “predictability” scales up from the

micro to the macro is what lies behind much confusion

in with respect to CDS. Rather, it seems that, as Philip

Anderson put it, “More is Different” [1].

Complexity has many different definitions and

meanings. This is because the complexity of a system

is relative to the type of difficulty that concerns one as

well as the frame/descriptive language in which that

system is represented [7]. In this case we would

characterise the syntactic complexity of a CDS as the

mailto:bruce@edmonds.name

“computational distance” from the set-up of a CDS to

the resultant behaviour at a later point in time, that is,

the minimum amount of computation necessary to

determine a certain aspect of a CDS‟s behaviour given

the initial conditions, set-up, plans, programs etc. (this

is similar to “logical depth” but without the condition

that the program needs to be the shortest possible). If

an easy-to-calculate short-cut to do this exists we say

that this aspect of the CDS‟s behaviour is simple. On

the other hand if the shortest way to determine this is

by running the CDS up to that point then it is

(syntactically) complex. In the section below we will

argue that many of the CDS that the SASO community

deals with are complex in this sense.

Clearly syntactic complexity can make it infeasible

for an actor/agent with computational limitations to

predict future behaviour, even if it has the full details

of the initial set-up and any subsequent environmental

inputs. In particular, if we wish to be able to predict

the behaviour of a class of such set-ups without

simulating each one then the presence of such

complexity makes this infeasible to do directly. Thus

syntactic complexity can be cause of effective

unpredictability. Pseudo-random number generators

are an example of this in practice – their syntactic

complexity makes their output unpredictable and

arbitrary in practice.

Emergence occurs when some significant behaviour

occurs that (a) is not reducible to the details of the

system set-up (otherwise it would not be new), but yet

(b) is totally consistent with those details (otherwise it

would not be from the system). Clearly both (a) and

(b) being the case is impossible within a simple formal

system. Rather what tends to happen is: since in a

system of high (possibly infinite) syntactic complexity

the behaviour is not predictable from the set-up then

observed behaviour that appears significant to an

observer is described in a different type of language to

that of the detailed interactions in the system. Since

this description represents observed behaviour of the

system it will be consistent with its implementation, but

because it is in a different language, it will not be

reducible to descriptions of the implementa

[26] the implementation is in terms of counters on a

checkerboard and when they move, but the emergent

behaviour that of the global segregation observed as a

result, even at high levels of tol [13]. This is

illustrated in Figure 1.

Set-up

Higher-level Description

Simulation

Abstraction

Figure 1. Emergence resulting from syntactic

complexity plus abstraction.

3. Complexity in CDS

Emergence and unpredictability are inevitable

features of complicated systems (including CDS), even

if they are deterministic and perfect implementations of

the programmer's intentions. This can be seen by

looking at some formal systems which, although

simpler than most CDS, can be easily mapped into

them (i.e. they are a simplification of the CDS)

[27] Wolfram exhibits a Cellular Automaton

(CA) which produces a seemingly random binary

sequence in its central column, in a deterministic

manner from a given initial state. Of course, since this

is a deterministic system and one has “run” it before

with a particular initial state then one knows (and hence

 Figure 2. CA rule 30 whose central column is essentially random (left shows rule and detail)

in a sense can „predict‟) what sequence will result, but

if one only knows what resulted from similar (but not

identical) initial states then there seems to be no way of

knowing what will result beforehand. Of course this is

true of any pseudo-number generating program, the

point is that, in this case, it would be easy to design an

CDS with the same properties using essentially the

same mechanism, so that what it had done in the past

would be no guide as to how it behaved the next time.

Of course it is very difficult to prove a negative,

namely that there is no “short cut” to determining such

a system‟s behaviour without doing the whole

simulation. So, despite the available evidence, it is

always possible for people to simply assert that there

must be some way of doing this. However there is

formal evidence against such a hope in the form of

Gregory Chaitin‟s proof that there are mathematical

truths of this kinds this kind whose simplest proof i

[6]. For these truths

there is no short-cut – no underlying, simpler reason

why they are true. In fact Chaitin‟s construction shows

that all but a vanishing number of such truths are like

this, so that those that are explainable by a simpler

construction are the tiny exception. In other words, for

most formal constructions there is no simpler

explanation of them – they are not amenable to

simplification.

[12] describes an apparently simple MAS, where

agents have a fixed library of simple plans that pass

unitary tokens between agents that is equivalent to a

Turing Machine, and hence are unpredictable in

general in advance as to their behaviour. In effect this

system implements integer arithmetic which puts it

beyond the scope of formal methods. Since most CDS

involve processes such as arithmetic there will not be

general and effective methods for predicting many of

its properties. In particular as [12] showed there will

be no general effective method for finding a program

that meets a given formal specification (even if we

know one exists), or a general effective method of

checking whether a given program meets a given

formal specification.

These sorts of results are b

[15]. In a sense Gödel‟s results went

further, they showed that (for most varieties of CDS)

that there will be true properties of such systems that

are not provable at all! That is that one might

(correctly) observe properties of such a system that are

not reachable in terms of a formal approach. In CDS

terms that means that there may well be some emergent

properties of deterministic systems as they run that

cannot be proved within any particular logic or formal

sys [29] that, even

for finite MAS the design problem is intractable

(PSPACE complete).

Of course, the situation is even worse in the real

world where there are essentially non-deterministic

factors from a variety of sources, including: actions

from actors/agents of unknown composition and goals,

random inputs, chunks of legacy code which have

insufficient documentation but are still used, bugs, and

machine limitations. That computer systems of any

complexity have unpredictable and emergent features,

even isolated and carefully designed systems, is part of

our everyday experience. That it is even more difficult

to get complicated MAS systems to behave in a

desirable way than traditional isolated and

deterministic code is also part of our everyday

experience.

[22] his advice includes (among others):

• Do not have too many agents (i.e. more than 10);

• Do not make the agents too complex;

• Do not allow too much communication between

your agents.

These criteria explicitly rule-out the kind of CDS

that are studied in the SASO community as well as all

those in any of the messy environments characteristic

of the real world where they may be used. These rules

hark back to the closed systems of unitary design that

the present era has left way behind. What is surprising

is not that such systems are unpredictable and, at best,

only partially amenable to design-based methods but

that we should have ever thought that they were.

4. Responses to complexity in CDS

So, given this situation, what can we do to try to get

CDS systems to behave within desirable constraints?

We consider some of the possibilities below.

The formalist answer is to attempt to use formal

methods, i.e. proof, to make the engineering of CDS

“scientific”.

[12] proved that formal methods are insufficient for

the design of any but the simplest of CDS (e.g. those

without arithmetic). Hence complete formal

verification is only possible for the very simplest CDS

components and almost no CDS that would help solve

real world problems. However formality can help in

some more mundane ways, namely:

1. Providing a precise and lingua-franca for

engineers for specifications and programs (allowing

almost error-free communication);

2. Allowing for specifications and programming

to be manipulated in well-defined and automatic ways;

3. Facilitating the inclusion of consistency

checks within code to prevent or warn of some

undesirable outcomes;

4. Provide a stable and expressive

framework/language for developers (or community of

developers) to gain experience and expertise in.

What is important is to abandon the delusion that

formal proof will ever be a major component in

generating or controlling the complex system level

behaviour that we see in real world problems.

The statistical approach is another way of getting at

apparently disordered systems. The first step is

assuming that the system can be considered as a set of

central tendencies plus essentially arbitrary deviations

from these. The idea is that although one might not be

able to predict or understand all the detail that emerges

from such a system this does not matter if there are

some broad identifiable trends that can be separated

from the “noise”. Thus far is fairly uncontroversial ,

but more problematic is the next step typically taken in

the statistical approach, that of making assumptions

about the nature of the noise, usually such as its

independence, randomness or normality. That these

are suspect for CDS is indicated by systems which

exhibit “Self-Organis [23]

list some criteria which indicate when SOC might

occur. These are:

• Agents are metastable – i.e. they do not change

their behaviour until some critical level of

stimulus has been reached;

• Interaction among agents is a dominant feature of

the model dynamics;

• Agents influence but do not slavishly imitate each

other;

• The system is slowly driven so that most agents

are below their critical states a lot of the time.

Clearly this includes many CDS. In such systems,

one can not make the usual assumptions about the

nature of any residual “noise”. For example when one

scales up Brian Arth [2] to

different sizes and plots the variation of the residuals it

does obey the “law of large numbers” as it would if it

were essentially random. That is the proportion of the

variation to the system size does not reduce with

i

[24]. In this model a fixed

number of individual‟s have to decide whether or not to

go to the El Farol Bar – basically they want to go if

others do, but not if many others want to go. They

make their decision in a variety of ways based upon the

past history of attendance numbers. This sort of system

results in a sharp (SOC) attendance patterns around the

“break-even” point. The variance in this attendance is

plotted in Figure 3 – one can see that this shows no

evidence that the variation around the central tendency

is dropping as a proportion of system size as the system

gets larger. This means that the “noise” is not random

and its distribution may well have undefined moments

(which can invalidate many standard statistical

techniques such as regression).

Figure 3. A plot of scaled standard deviation

ag

[2].

The solid line connects the observed values; the dashed

line what one would expect were the deviations were

random. This is exactly the same sorts of lack of the

law of large numbers that was found in [24] , which

showed that in a globally coupled chaotic system what

appeared to be noise did not diminish (as a proportion

of the whole signal) with ever larger samples.

Here care should be take to distinguish between

descriptive and generative statistics. In descriptive

statistics one is simply describing/summarising a set of

known data, whilst in generative statistics a data-

generating process is encapsulated which is supposed

to be a model of an observed data stream. Thus, in the

latter case, there must be some sense in which the

statistics are a model of the source of the observed

data. So, for example, if one does have a SOC system

which is producing a stream of data with no defined

second moment, then positing a distribution with a

defined second moment would be a fundamental

misrepresentation. Whereas any finite set of data

obtained from this source will have defined second

moment, which might be a meaningful description of

the data for some purposes (e.g. in comparison with a

different set of data from the same source and with the

same length). However it would be a mistake to

interpret that statistic as representing anything about

underlying system since it is merely an artefact of the

fact you are dealing with a finite data set.

Due to the fact that one cannot rely on something

like the law of large numbers means that one can no

rely on the Monte Carlo method of averaging over

multiple randomised runs of the system.

The infeasibility (and even impossibility) of using

formal or statistical techniques to predict what a CDS

will do based on fundamental principles leaves us with

a problem, namely: what can we do to understand and

manage CDS? This we turn to in the next section.

5. Towards Farming Systems

Dealing with CDS rather than simple systems will

call for a change in emphasis. Below are some of the

“axes” along which such a change may have to occur.

This is a shift of viewpoint and approach – looking at

the CDS as a given whole system. These shifts cannot

be proved in general more than the indications from

abstract cases (such as the ones above indicate).

5.1. Reliability from experience rather than

control of construction

At worst many of the systems we will have to

manage will not be those where we will have had

control over its construction. These systems may be

composed of a variety of nodes or components which

participates within the overall system but whose origin

is out of our control as with many P2P systems. Even

if all the components are theoretically under our

control in the construction phases this does not mean

that this can ensure a reliable system in total, if the

system is complex and adaptive.

In either case for CDS, trying to achieve system

reliability by means of careful construction will have

limitations, and some of the desired reliability will have

to be gained via management as a result of us watching

and learning how to intervene to keep the system going.

That is using observation and experience of the system

as it happens to be, rather than what it should be

according to its design or construction. In a way this is

a shift from a reductionist thinking about computational

systems to a more holist one, as a result of a

recognition that in practice (and often in theory) the

detailed construction of a CDS is only a guide to

resulting system behaviour. The construction may

provide a good hypothesis for the system behaviour but

no more than this.

5.2. Post construction care rather than prior

effort

A consequence of the above a lot of the effort in

managing CDS has to shift from before the moment of

construction to after. No amount of care before a

system is constructed will eliminate the need for

substantial post-construction care and management.

Instead of viewing our software constructions like a

bridge whose parts can be largely relied upon and

forgotten once in place, we may have to think of them

more like a human organisation whose parts need

substantial management once it is going.

5.3. Continual tinkering rather than one-off

effort

Since parts of a CDS are constantly changing and

adapting they will need continual adjustment. There

may well be no permanent configuration that will be

sufficient for the conditions it is to encounter. Instead

of a one-off “heroic” effort of engineering, the more

mundane activity of management and adjustment will

be needed – re-engineering, adjusting and re-building

parts as it is needed.

5.4. Multiple fallible mechanisms rather

than one reliable mechanism

Since all mechanisms are fallible with CDS,

multiple and overlapping systems can increase

reliability, such as is found in biological systems. Thus

if, for some unforeseen reason, one fails to work

another might. That we cannot foresee that more than

one mechanism will definitely be needed, we cannot

tell that parallel and overlapping mechanisms will not

be helpful. Rather a variety of mechanisms are more

likely to cope with a variety of unforeseen

circumstances.

5.5. Monitoring rather than prediction

CDS do not lend themselves well to prediction. If

we could predict what they would do, we would be able

to tell if our design was the correct one beforehand. It

might well be that the best we can do is to merely catch

trends and developments within a system as soon as

possible after they start to develop. In this way

ameliorative action can be taken as quickly as possible.

The inherent unpredictability of many CDS means that

we cannot be sure to detect it before it occurs (i.e.

predict it).

5.6. Disaster aversion rather than optimising

performance

The large uncertainties in CDS mean that one has

no hope of optimising its performance (by any

measure). Rather a more attainable target is simply the

aversion of system breakdown. For example

preventing the invasion of a file-sharing by

uncooperative users, or distrust breaking a market-

based system.

5.7. Partial rather than full understanding

CDS mean that we are never going to have a full

understanding of what is happening, but we will have

to be satisfied with partial or incomplete understanding.

Such partial understandings may be fine for a certain

set of conditions or context, but completely break-

down in another set. Gaining a working partial

understanding in a particular set of circumstances

might be more important than attempting to achieve a

full understanding. A continual partial re-

understanding of CDS may just be more effective than

spending a lot of time attempting a fuller one.

5.8. Specific rather than abstract modelling

The fact that some CDS are susceptible to sharp

“phase changes” with changes of situation means that

general and abstract models (or theories) of their

behaviour may simply not be applicable. Rather we

may can a greater handle on their brittleness and kinds

of behavioural traits by modelling them in very specific

and details ways – eschewing abstraction. This takes a

lot more effort in terms of model construction but, on

the other hand, it more straightforward since less

abstraction is required – fewer decisions of what to

include and what not to. A detailed simulation can be

both a prototype of a system (so resulting global

behaviour can be checked as well as its construction) as

well as then being a (fallible) diagnostic tool once it is

going.

5.9. Many models rather than one

The knowledge concerning the CDS may be

incorporated in a number of simulations at different

levels of abstraction. The lowest level being the

detailed descriptive simulation described immediately

above and higher levels modelling aspects of that

simulation. Indeed there will typically need to be a

series of simulations at different levels of abstraction.

This multi-layered simulation approach was suggested

in [9] (among others) and attempted [20] , where a

sequence of simulations models goes from the abstract

to real applications. Similarly due to the changing

nature of CDS with circumstance there will, almost

inevitably, need to be a sequence of such models (or

sequence of model chains), as the system evolves and

develops.

5.10. A community rather than individual

effort

Any effective working information about CDS will

necessarily be detailed and specific to a particular set

of circumstances. That means gathering many more

examples, case-studies and evidence about the

behaviour of CDS than it is feasible for an individual to

collect. Thus those engaged with similar CDS being

used in similar situations will need to pool their

knowledge, spreading what does and does not work.

The short answer is that the understanding of CDS

has tp become more of a "natural" (as opposed to

formal) science – more like biology than mathematics

or logic.

6. Conclusion

The wish for a “short-cut” to the production and

control of CDS is strong, almost as strong as the wish

for a “proper engineering” of CDS with firm

foundations in logic and formal methods. But wishing

does not make things true and one can only keep up the

spin that we are “almost there” for a short period of

time without substantive supporting evidence. It is

now time to accept that managing CDS is

fundamentally different from simple computational

systems, that careful design will not be enough (or

frequently even an option).

There is a place for design in the production and

management of CDS, but it is not such a prominent one

– rather the bulk of the progress will rely on trying out

techniques and seeing which ones work, where they

work and why.

In particular we call upon those in the SASO

community to explicitly and loudly reject those

principles and approaches that are not applicable to the

systems they are working with (even though they may

applicable for other, simpler systems). Namely to

reject that:

• formal proof will play a major role in their

production;

• there is likely to be any “magic bullet” techniques

with universal applicability for designing CDS;

• the validation, management and adaptation of

CDS are secondary matters that can be

significantly ameliorated by good design;

• the specify and design methodology is the only

real way to proceed.

Reading between the lines in many SASO papers

that I have read, I think many in this community do

reject these but have not openly declared this.

However we argue that the SASO community will need

to take a different path to that pursued by the agent

community over the last decade, putting it in the

vanguard of the “software revolution” detected by

Zambonelli and Parunack[30] .

The nub is that we need to accept a more mundane

role, the equivalent of a farmer. Less prior “heroic”

design and more mundane post hoc management. Less

abstract and general theory used to predict system

properties and more specific and context-dependent

modelling used to guide system monitoring and fault

diagnosis. Less neat understanding and more of a

messy “community of practice” using rules of thumb

and models for particular circumstances and situations.

Less assurance from good design and more from a

history of having used and worked with such systems.

In a sense the whole of such conferences such as

SASO are to explore how such farming can be reduced

and/or eliminating as a result of intelligent design and

deep understanding. This paper is simply a reminder

that with CDS such efforts will be limited in their

efficacy and that, if we are to develop effective means

of managing CDS we might have to concentrate on the

more mundane business of system farming.

References

[1] Anderson, P.W. (1972) More is Different, Science,

177:393-396.

[2] Arthur,WB; 1994, Inductive Reasoning and Bounded

Rationality, American Economic Association Papers and

Proceedings, 84:406-411

[3] Bak, P. (1996) How nature works: the science of self-

organized criticality, Copernicus.

[4] Bennett,C.H. (1988), Logical Depth and Physical

Complexity, in Herken, R. (ed) The Universal Turing

Machine, A Half-Century Survey, OUP, pages 227-257.

[5] Caldarelli, G., Higgs, P.G., and McKane, A.J. (1998)

Modelling coevolution in multispecies communities. Journal

of Theoretical Biology, 193:345–358

[6] Chaitin, G. J. (1994) Randomness and Complexity in

Pure Mathematics. Int. Journal of Bifurcation and Chaos,

4:3-15.

[7] Edmonds, B. (1999) Syntactic Measures of Complexity.

PhD Thesis, Department of Philosophy, Manchester

University, UK. http://bruce.edmonds.name/thesis/

[8] Edmonds, B. (1999) Modelling Bounded Rationality In

Agent-Based Simulations using the Evolution of Mental

Models. In Brenner, T. (ed.), Computational Techniques for

Modelling Learning in Economics, Kluwer, 305-332.

[9] Edmonds, B. (2005) Using the experimental method to

produce reliable self-organised systems, in Engineering Self-

Organising Systems: Methodologies And Applications

(ESOA 2004), LNAI, 3464:84-99.

[10] Edmonds, B. (2005) The Nature of Noise. CPM

Report 05-156, MMU, Manchester, UK.

http://cfpm.org/cpmrep156.html.

[11] Edmonds, B. (2006) The Emergence of Symbiotic

Groups Resulting From Skill-Differentiation and Tags,

Journal of Artificial Societies and Social Simulation, 9(1)

http://www.jasss.soc.ac.uk/9/1/10.html

[12] Edmonds, B. and Bryson, J.J. (2004) The Insufficiency

of Formal Design Methods – The necessity of an

experimental approach for the understanding and control of

CDS, in Proc. of the 3rd Int. Joint Conf. on Autonomous

Agents and Multiagent Systems (AAMAS 2004). New York,

New York: IEEE Computer Society, 938-945.

[13] Edmonds, B. and Hales, D. (2005) Computational

Simulation as Theoretical Experiment, Journal of

Mathematical Sociology 29(3):209-232.

[14] Georgé, J-P., Edmonds, B. and Glize, P. (2004)

Making Self-Organizing Adaptive Multi-Agent Systems

Work – Towards The Engineering Of Emergent Multi-Agent

Systems. In Bergenti, F. & al. (eds.) Methodologies And

Software Engineering For Agent Systems, New York:

Springer (was Kluwer Academic), 321-340.

[15] Gödel, K. (1931) Uber formal unentscheidbare Sätze

der Principia Mathematica und verwandter System I.

Monatschefte Math. Phys. 38: 173-198.

[16] Hales, D. (2000) Cooperation without Space or

Memory: Tags, Groups and the Prisoner's Dilemma. In

Multi-Agent-Based Simulation. LNAI 1979:157-166.

Springer. Berlin.

[17] Hales, D. (2001) Tag Based Co-operation in Artificial

Societies. PhD Thesis, Department of Computer Science,

University of Essex.

[18] Hales, D. and Edmonds, B. (2003) Evolving social

rationality for MAS using "tags", in Proc. of the 2nd Int.

Joint Conf. on Autonomous Agents and Multiagent Systems

(AAMAS 2003). Melbourne, Australia: ACM Press, 497-

503.

[19] Hales, D. and Edmonds, B. (2004) Can tags build

working systems? From MABS to ESOA, in Engineering

Self-Organising Systems (ESOA 2003), LNAI, 2977:186-

194.

[20] Hales, D. and Edmonds, B. (2005) Applying a socially

inspired technique (tags) to improve cooperation in P2P

networks, IEEE Transactions On Systems Man And

Cybernetics Part A-Systems And Humans, 35:385-395.

[21] Holland, J. (1993) The Effect of Labels (Tags) on

Social Interactions. SFI Working Paper 93-10-064. Santa Fe

Institute, Santa Fe, New Mexico, USA.

[22] Jennings, N.R., (2000) On agent-based software

engineering, Artificial Intelligence, 117(2):277-296.

[23] Jenson, H.J. (1998) Self-organized criticality :

emergent complex behavior in physical and biological

systems, Cambridge University Press, Cambridge lecture

notes in physics: 10.

[24] Kaneko, K. (1990). Globally Coupled Chaos Violates

the Law of Large Numbers but not the Central Limit

Theorem. Physics Review Letters, 65: 1391-1394.

[25] Rao, A. S. and Georgeff, M.P. (1995) BDI agents:

From theory to practice. In Victor Lesser, editor, Proc. of the

1st Int. Conf. on Multi-Agent Systems (ICMAS-95). MIT

Press.

[26] Schelling, T.C. (1978) Micromotives and

macrobehavior, New York: Norton.

[27] Wolfram, S. (1986). Random sequence generation by

cellular automata. Advances in Applied Mathematics, 7:123–

169.

[28] Wooldridge, M. (2000) Reasoning about rational

agents. MIT Press.

[29] Wooldridge, M. (2000) The Computational

Complexity of Agent Design Problems. Proc. of the 4th Int.

Conf. on MultiAgent Systems, IEEE Computer Society, 341-

348.

[30] Zambonelli, Z. and Parunak, H.V.D. (2002) Signs of a

Revolution in Computer Science and Software Engineering,

in 3rd Int. Workshop on Engineering Societies in the Agents

World, Madrid, Spain.

http://www.ai.univie.ac.at/~paolo/conf/ESAW02/

