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Abstract 
 

We discuss the implications of emergence and 

complexity for the management of complex distributed 

systems (CDS).  We argue that while formal design 

methods may play a role, they have distinct limitations 

where it comes to complex systems.  There are similar 

limitations to statistical methods.  Thus we must look to 

other ways of managing these systems, involving a shift 

from: prior one-off design towards post hoc continual 

management; from predictive abstract theory towards 

detailed descriptive modelling to guide monitoring and 

aid diagnosis; from system optimisation to simple 

disaster prevention; from single models to many 

models; from single well-designed mechanisms to 

multiple overlapping mechanisms; from individual to 

collective effort.  We call upon those in the SASO 

community to explicitly reject those tenets that are only 

useful with simple systems.  In other words, when 

trying to understand CDS, become more like zoologists 

rather than mathematicians and when managing them 

becoming more like farmers than engineers (at least in 

the classic sense). 

1. Introduction 

Consider farmers. They may know their animals, 

crops and land in some detail, but are under no illusion 

that designing a farm in advance would contribute 

more than a small part to its success.  Rather they 

understand that they have to be acting upon it 

constantly to try and get acceptable results – less an 

exercise in careful planning than disaster avoidance 

using constant monitoring and mundane maintenance.  

In such a situation, new ideas cannot be assessed on the 

grounds of reason and plausibility alone (even those 

suggested by scientific advisors) but have to be tried 

out in situ.  Solutions are almost never permanent and 

universal but rather a series of tactics that work for 

different periods of time in particular circumstances.  

Techniques that are seen to provide real benefit (even if 

that benefit is marginal) are adopted by others nearby 

so that, in the longer run, a community of specific and 

local practices evolve. This paper suggests that in order 

to effectively manage complex distributed systems 

(CDS) we have to learn to be more like farmers and 

less like mathematicians or engineers (in the classic 

sense).   

This is a difficult lesson to adsorb.  As computer 

scientists we are taught the value of good design – 

constructing the system sufficiently carefully so that we 

know that it will work well once built.  That bugs are 

bad and we can limit them by carful specification and 

implementation.  However CDS may not be very 

amenable to such an approach, requiring considerable 

and continual post construction adaption where the 

system is only ever partially understood.  Here bugs 

may not only be inevitable, but the very things that 

make the CDS „work‟.  In other words learn to “farm” 

the systems that we need – system farming. 

The argument proceeds as follows: Section 2 makes 

clear what we mean by the ideas of syntactic 

complexity, unpredictability and emergence, arguing 

that emergent phenomena cannot be formally reduced 

to system properties; ... in Section 6 calling on the 

SASO community to explicitly reject approaches that 

only work for simple systems. 

2. Unpredictability and emergence 

In this section we discuss and define 

unpredictability, complexity and emergence w.r.t. CDS.  

In particular, we want to show that: just because a 

particular emergent feature is caused by the 

mechanisms and set-up of a CDS and that each micro-

step is completely understandable in a deterministic 

way, this does not mean that the emergent feature is 

reducible to the mechanisms and set-up.  It may be that 

the assumption that “predictability” scales up from the 

micro to the macro is what lies behind much confusion 

in with respect to CDS.  Rather, it seems that, as Philip 

Anderson put it, “More is Different” [1]. 

Complexity has many different definitions and 

meanings.  This is because the complexity of a system 

is relative to the type of difficulty that concerns one as 

well as the frame/descriptive language in which that 

system is represented [7].  In this case we would 

characterise the syntactic complexity of a CDS as the 
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“computational distance” from the set-up of a CDS to 

the resultant behaviour at a later point in time, that is, 

the minimum amount of computation necessary to 

determine a certain aspect of a CDS‟s behaviour given 

the initial conditions, set-up, plans, programs etc. (this 

is similar to “logical depth” but without the condition 

that the program needs to be the shortest possible).  If 

an easy-to-calculate short-cut to do this exists we say 

that this aspect of the CDS‟s behaviour is simple.  On 

the other hand if the shortest way to determine this is 

by running the CDS up to that point then it is 

(syntactically) complex.  In the section below we will 

argue that many of the CDS that the SASO community 

deals with are complex in this sense. 

Clearly syntactic complexity can make it infeasible 

for an actor/agent with computational limitations to 

predict future behaviour, even if it has the full details 

of the initial set-up and any subsequent environmental 

inputs.  In particular, if we wish to be able to predict 

the behaviour of a class of such set-ups without 

simulating each one then the presence of such 

complexity makes this infeasible to do directly.  Thus 

syntactic complexity can be cause of effective 

unpredictability.  Pseudo-random number generators 

are an example of this in practice – their syntactic 

complexity makes their output unpredictable and 

arbitrary in practice. 

Emergence occurs when some significant behaviour 

occurs that (a) is not reducible to the details of the 

system set-up (otherwise it would not be new), but yet 

(b) is totally consistent with those details (otherwise it 

would not be from the system).  Clearly both (a) and 

(b) being the case is impossible within a simple formal 

system.  Rather what tends to happen is: since in a 

system of high (possibly infinite) syntactic complexity 

the behaviour is not predictable from the set-up then 

observed behaviour that appears significant to an 

observer is described in a different type of language to 

that of the detailed interactions in the system.  Since 

this description represents observed behaviour of the 

system it will be consistent with its implementation, but 

because it is in a different language, it will not be 

reducible to descriptions of the implementa

[26] the implementation is in terms of counters on a 

checkerboard and when they move, but the emergent 

behaviour that of the global segregation observed as a 

result, even at high levels of tol [13].  This is 

illustrated in Figure 1.   
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Figure 1. Emergence resulting from syntactic 

complexity plus abstraction. 

3. Complexity in CDS 

Emergence and unpredictability are inevitable 

features of complicated systems (including CDS), even 

if they are deterministic and perfect implementations of 

the programmer's intentions.  This can be seen by 

looking at some formal systems which, although 

simpler than most CDS, can be easily mapped into 

them (i.e. they are a simplification of the CDS) 

[27] Wolfram exhibits a Cellular Automaton 

(CA) which produces a seemingly random binary 

sequence in its central column, in a deterministic 

manner from a given initial state.  Of course, since this 

is a deterministic system and one has “run” it before 

with a particular initial state then one knows (and hence 

 Figure 2. CA rule 30 whose central column is essentially random (left shows rule and detail) 



in a sense can „predict‟) what sequence will result, but 

if one only knows what resulted from similar (but not 

identical) initial states then there seems to be no way of 

knowing what will result beforehand.  Of course this is 

true of any pseudo-number generating program, the 

point is that, in this case, it would be easy to design an 

CDS with the same properties using essentially the 

same mechanism, so that what it had done in the past 

would be no guide as to how it behaved the next time.   

Of course it is very difficult to prove a negative, 

namely that there is no “short cut” to determining such 

a system‟s behaviour without doing the whole 

simulation.  So, despite the available evidence, it is 

always possible for people to simply assert that there 

must be some way of doing this.  However there is 

formal evidence against such a hope in the form of 

Gregory Chaitin‟s proof that there are mathematical 

truths of this kinds  this kind  whose simplest proof i

[6].  For these truths 

there is no short-cut – no underlying, simpler reason 

why they are true.  In fact Chaitin‟s construction shows 

that all but a vanishing number of such truths are like 

this, so that those that are explainable by a simpler 

construction are the tiny exception.  In other words, for 

most formal constructions there is no simpler 

explanation of them – they are not amenable to 

simplification. 

[12] describes an apparently simple MAS, where 

agents have a fixed library of simple plans that pass 

unitary tokens between agents that is equivalent to a 

Turing Machine, and hence are unpredictable in 

general in advance as to their behaviour.  In effect this 

system implements integer arithmetic which puts it 

beyond the scope of formal methods.  Since most CDS 

involve processes such as arithmetic there will not be 

general and effective methods for predicting many of 

its properties.  In particular as [12] showed there will 

be no general effective method for finding a program 

that meets a given formal specification (even if we 

know one exists), or a general effective method of 

checking whether a given program meets a given 

formal specification. 

These sorts of results are b

[15].   In a sense Gödel‟s results went 

further, they showed that (for most varieties of CDS) 

that there will be true properties of such systems that 

are not provable at all!  That is that one might 

(correctly) observe properties of such a system that are 

not reachable in terms of a formal approach.  In CDS 

terms that means that there may well be some emergent 

properties of deterministic systems as they run that 

cannot be proved within any particular logic or formal 

sys [29] that, even 

for finite MAS the design problem is intractable 

(PSPACE complete). 

Of course, the situation is even worse in the real 

world where there are essentially non-deterministic 

factors from a variety of sources, including: actions 

from actors/agents of unknown composition and goals, 

random inputs, chunks of legacy code which have 

insufficient documentation but are still used, bugs, and 

machine limitations.  That computer systems of any 

complexity have unpredictable and emergent features, 

even isolated and carefully designed systems, is part of 

our everyday experience.  That it is even more difficult 

to get complicated MAS systems to behave in a 

desirable way than traditional isolated and 

deterministic code is also part of our everyday 

experience.   

[22] his advice includes (among others): 

• Do not have too many agents (i.e. more than 10); 

• Do not make the agents too complex; 

• Do not allow too much communication between 

your agents. 

These criteria explicitly rule-out the kind of CDS 

that are studied in the SASO community as well as all 

those in any of the messy environments characteristic 

of the real world where they may be used.  These rules 

hark back to the closed systems of unitary design that 

the present era has left way behind.  What is surprising 

is not that such systems are unpredictable and, at best, 

only partially amenable to design-based methods but 

that we should have ever thought that they were. 

4. Responses to complexity in CDS 

So, given this situation, what can we do to try to get 

CDS systems to behave within desirable constraints?  

We consider some of the possibilities below. 

The formalist answer is to attempt to use formal 

methods, i.e. proof, to make the engineering of CDS 

“scientific”.   

[12] proved that formal methods are insufficient for 

the design of any but the simplest of CDS (e.g. those 

without arithmetic).  Hence complete formal 

verification is only possible for the very simplest CDS 

components and almost no CDS that would help solve 

real world problems.  However formality can help in 

some more mundane ways, namely: 

1. Providing a precise and lingua-franca for 

engineers for specifications and programs (allowing 

almost error-free communication); 



2. Allowing for specifications and programming 

to be manipulated in well-defined and automatic ways; 

3. Facilitating the inclusion of consistency 

checks within code to prevent or warn of some 

undesirable outcomes; 

4. Provide a stable and expressive 

framework/language for developers (or community of 

developers) to gain experience and expertise in. 

What is important is to abandon the delusion that 

formal proof will ever be a major component in 

generating or controlling the complex system level 

behaviour that we see in real world problems. 

The statistical approach is another way of getting at 

apparently disordered systems.  The first step is 

assuming that the system can be considered as a set of 

central tendencies plus essentially arbitrary deviations 

from these.  The idea is that although one might not be 

able to predict or understand all the detail that emerges 

from such a system this does not matter if there are 

some broad identifiable trends that can be separated 

from the “noise”.  Thus far is fairly uncontroversial , 

but more problematic is the next step typically taken in 

the statistical approach, that of making assumptions 

about the nature of the noise, usually such as its 

independence, randomness or normality.  That these 

are suspect for CDS is indicated by systems which 

exhibit “Self-Organis [23] 

list some criteria which indicate when SOC might 

occur. These are: 

• Agents are metastable – i.e. they do not change 

their behaviour until some critical level of 

stimulus has been reached; 

• Interaction among agents is a dominant feature of 

the model dynamics; 

• Agents influence but do not slavishly imitate each 

other; 

• The system is slowly driven so that most agents 

are below their critical states a lot of the time. 

Clearly this includes many CDS.  In such systems, 

one can not make the usual assumptions about the 

nature of any residual “noise”.  For example when one 

scales up Brian Arth [2] to 

different sizes and plots the variation of the residuals it 

does obey the “law of large numbers” as it would if it 

were essentially random.  That is the proportion of the 

variation to the system size does not reduce with 

i

[24].  In this model a fixed 

number of individual‟s have to decide whether or not to 

go to the El Farol Bar – basically they want to go if 

others do, but not if many others want to go.  They 

make their decision in a variety of ways based upon the 

past history of attendance numbers.  This sort of system 

results in a sharp (SOC) attendance patterns around the 

“break-even” point.  The variance in this attendance is 

plotted in Figure 3 – one can see that this shows no 

evidence that the variation around the central tendency 

is dropping as a proportion of system size as the system 

gets larger.  This means that the “noise” is not random 

and its distribution may well have undefined moments 

(which can invalidate many standard statistical 

techniques such as regression). 

 
Figure 3. A plot of scaled standard deviation 

ag

[2]. 

The solid line connects the observed values; the dashed 

line what one would expect were the deviations were 

random.  This is exactly the same sorts of lack of the 

law of large numbers that was found in [24] , which 

showed that in a globally coupled chaotic system what 

appeared to be noise did not diminish (as a proportion 

of the whole signal) with ever larger samples. 

Here care should be take to distinguish between 

descriptive and generative statistics.  In descriptive 

statistics one is simply describing/summarising a set of 

known data, whilst in generative statistics a data-

generating process is encapsulated which is supposed 

to be a model of an observed data stream.  Thus, in the 

latter case, there must be some sense in which the 

statistics are a model of the source of the observed 

data.  So, for example, if one does have a SOC system 

which is producing a stream of data with no defined 

second moment, then positing a distribution with a 

defined second moment would be a fundamental 

misrepresentation.  Whereas any finite set of data 

obtained from this source will have defined second 

moment, which might be a meaningful description of 

the data for some purposes (e.g. in comparison with a 

different set of data from the same source and with the 

same length).  However it would be a mistake to 

interpret that statistic as representing anything about 



underlying system since it is merely an artefact of the 

fact you are dealing with a finite data set. 

Due to the fact that one cannot rely on something 

like the law of large numbers means that one can no 

rely on the Monte Carlo method of averaging over 

multiple randomised runs of the system. 

The infeasibility (and even impossibility) of using 

formal or statistical techniques to predict what a CDS 

will do based on fundamental principles leaves us with 

a problem, namely: what can we do to understand and 

manage CDS?  This we turn to in the next section. 

5. Towards Farming Systems 

Dealing with CDS rather than simple systems will 

call for a change in emphasis.  Below are some of the 

“axes” along which such a change may have to occur.  

This is a shift of viewpoint and approach – looking at 

the CDS as a given whole system.  These shifts cannot 

be proved in general more than the indications from 

abstract cases (such as the ones above indicate). 

5.1. Reliability from experience rather than 

control of construction 

At worst many of the systems we will have to 

manage will not be those where we will have had 

control over its construction.  These systems may be 

composed of a variety of nodes or components which 

participates within the overall system but whose origin 

is out of our control as with many P2P systems.  Even 

if all the components are theoretically under our 

control in the construction phases this does not mean 

that this can ensure a reliable system in total, if the 

system is complex and adaptive.   

In either case for CDS, trying to achieve system 

reliability by means of careful construction will have 

limitations, and some of the desired reliability will have 

to be gained via management as a result of us watching 

and learning how to intervene to keep the system going.  

That is using observation and experience of the system 

as it happens to be, rather than what it should be 

according to its design or construction.  In a way this is 

a shift from a reductionist thinking about computational 

systems to a more holist one, as a result of a 

recognition that in practice (and often in theory) the 

detailed construction of a CDS is only a guide to 

resulting system behaviour.  The construction may 

provide a good hypothesis for the system behaviour but 

no more than this. 

5.2. Post construction care rather than prior 

effort 

A consequence of the above a lot of the effort in 

managing CDS has to shift from before the moment of 

construction to after.  No amount of care before a 

system is constructed will eliminate the need for 

substantial post-construction care and management.  

Instead of viewing our software constructions like a 

bridge whose parts can be largely relied upon and 

forgotten once in place, we may have to think of them 

more like a human organisation whose parts need 

substantial management once it is going. 

5.3. Continual tinkering rather than one-off 

effort 

Since parts of a CDS are constantly changing and 

adapting they will need continual adjustment.  There 

may well be no permanent configuration that will be 

sufficient for the conditions it is to encounter.  Instead 

of a one-off “heroic” effort of engineering, the more 

mundane activity of management and adjustment will 

be needed – re-engineering, adjusting and re-building 

parts as it is needed. 

5.4. Multiple fallible mechanisms rather 

than one reliable mechanism 

Since all mechanisms are fallible with CDS, 

multiple and overlapping systems can increase 

reliability, such as is found in biological systems.  Thus 

if, for some unforeseen reason, one fails to work 

another might.  That we cannot foresee that more than 

one mechanism will definitely be needed, we cannot 

tell that parallel and overlapping mechanisms will not 

be helpful.  Rather a variety of mechanisms are more 

likely to cope with a variety of unforeseen 

circumstances. 

5.5. Monitoring rather than prediction 

CDS do not lend themselves well to prediction.  If 

we could predict what they would do, we would be able 

to tell if our design was the correct one beforehand.  It 

might well be that the best we can do is to merely catch 

trends and developments within a system as soon as 

possible after they start to develop.  In this way 

ameliorative action can be taken as quickly as possible.  

The inherent unpredictability of many CDS means that 

we cannot be sure to detect it before it occurs (i.e. 

predict it). 



5.6. Disaster aversion rather than optimising 

performance 

The large uncertainties in CDS mean that one has 

no hope of optimising its performance (by any 

measure).  Rather a more attainable target is simply the 

aversion of system breakdown.  For example 

preventing the invasion of a file-sharing by 

uncooperative users, or distrust breaking a market-

based system. 

5.7. Partial rather than full understanding 

CDS mean that we are never going to have a full 

understanding of what is happening, but we will have 

to be satisfied with partial or incomplete understanding.  

Such partial understandings may be fine for a certain 

set of conditions or context, but completely break-

down in another set.  Gaining a working partial 

understanding in a particular set of circumstances 

might be more important than attempting to achieve a 

full understanding.  A continual partial re-

understanding of CDS may just be more effective than 

spending a lot of time attempting a fuller one. 

5.8. Specific rather than abstract modelling 

The fact that some CDS are susceptible to sharp 

“phase changes” with changes of situation means that 

general and abstract models (or theories) of their 

behaviour may simply not be applicable.  Rather we 

may can a greater handle on their brittleness and kinds 

of behavioural traits by modelling them in very specific 

and details ways – eschewing abstraction.  This takes a 

lot more effort in terms of model construction but, on 

the other hand, it more straightforward since less 

abstraction is required – fewer decisions of what to 

include and what not to.  A detailed simulation can be 

both a prototype of a system (so resulting global 

behaviour can be checked as well as its construction) as 

well as then being a (fallible) diagnostic tool once it is 

going. 

5.9. Many models rather than one 

The knowledge concerning the CDS may be 

incorporated in a number of simulations at different 

levels of abstraction.  The lowest level being the 

detailed descriptive simulation described immediately 

above and higher levels modelling aspects of that 

simulation.  Indeed there will typically need to be a 

series of simulations at different levels of abstraction.  

This multi-layered simulation approach was suggested 

in [9] (among others) and attempted [20] , where a 

sequence of simulations models goes from the abstract 

to real applications.  Similarly due to the changing 

nature of CDS with circumstance there will, almost 

inevitably, need to be a sequence of such models (or 

sequence of model chains), as the system evolves and 

develops. 

5.10. A community rather than individual 

effort 

Any effective working information about CDS will 

necessarily be detailed and specific to a particular set 

of circumstances.  That means gathering many more 

examples, case-studies and evidence about the 

behaviour of CDS than it is feasible for an individual to 

collect.  Thus those engaged with similar CDS being 

used in similar situations will need to pool their 

knowledge, spreading what does and does not work. 

 

The short answer is that the understanding of CDS 

has tp become more of a "natural" (as opposed to 

formal) science – more like biology than mathematics 

or logic.   

6. Conclusion 

The wish for a “short-cut” to the production and 

control of CDS is strong, almost as strong as the wish 

for a “proper engineering” of CDS with firm 

foundations in logic and formal methods.  But wishing 

does not make things true and one can only keep up the 

spin that we are “almost there” for a short period of 

time without substantive supporting evidence.  It is 

now time to accept that managing CDS is 

fundamentally different from simple computational 

systems, that careful design will not be enough (or 

frequently even an option). 

There is a place for design in the production and 

management of CDS, but it is not such a prominent one 

– rather the bulk of the progress will rely on trying out 

techniques and seeing which ones work, where they 

work and why.   

In particular we call upon those in the SASO 

community to explicitly and loudly reject those 

principles and approaches that are not applicable to the 

systems they are working with (even though they may 

applicable for other, simpler systems).  Namely to 

reject that: 

• formal proof will play a major role in their 

production; 

• there is likely to be any “magic bullet” techniques 

with universal applicability for designing CDS; 



• the validation, management and adaptation of 

CDS are secondary matters that can be 

significantly ameliorated by good design; 

• the specify and design methodology is the only 

real way to proceed. 

Reading between the lines in many SASO papers 

that I have read, I think many in this community do 

reject these but have not openly declared this.  

However we argue that the SASO community will need 

to take a different path to that pursued by the agent 

community over the last decade, putting it in the 

vanguard of the “software revolution” detected by 

Zambonelli and Parunack[30] . 

The nub is that we need to accept a more mundane 

role, the equivalent of a farmer.  Less prior “heroic” 

design and more mundane post hoc management.  Less 

abstract and general theory used to predict system 

properties and more specific and context-dependent 

modelling used to guide system monitoring and fault 

diagnosis.  Less neat understanding and more of a 

messy “community of practice” using rules of thumb 

and models for particular circumstances and situations.  

Less assurance from good design and more from a 

history of having used and worked with such systems.   

In a sense the whole of such conferences such as 

SASO are to explore how such farming can be reduced 

and/or eliminating as a result of intelligent design and 

deep understanding.  This paper is simply a reminder 

that with CDS such efforts will be limited in their 

efficacy and that, if we are to develop effective means 

of managing CDS we might have to concentrate on the 

more mundane business of system farming. 
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