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Abstract. The ‘engineering’ and ‘adaptive’ approaches to system production 
are distinguished. It is argued that producing reliable self-organised software 
systems (SOSS) will necessarily involve considerable use of adaptive 
approaches.  A class of apparently simple multi-agent systems is defined, which 
however has all the power of a Turing machine, and hence is beyond formal 
specification and design methods (in general).  It is then shown that such 
systems can be evolved to perform simple tasks.  This highlights how we may 
be faced with systems whose workings we have not wholly designed and hence 
that we will have to treat them more as natural science treat the systems it 
encounters, namely using the classic experimental method.  An example is 
briefly discussed. A system for annotating such systems with hypotheses, and 
conditions of application is proposed that would be a natural extension of 
current methods of open source code development. 

1. Introduction 

Zambonelli and van Dyke (in parallel with others) have pointed out that, increasingly, 
a different kind of computer system will be required if we are to meet many of 
society’s needs [19] and these are starting to be developed.  In this paper I go further1 
and argue that in parallel with different kinds of system we will need a different kind 
of approach to producing such systems – an approach which places more emphasis on 
natural scientific approaches than has been usual in multi-agent systems.  In other 
words, that design and engineering (in a sense I will make clear) must make more 
room for adaptation and experiment. 

I start by distinguishing what I call the ‘engineering’ and ‘adaptation’ approaches 
and their how they are applied (both separately and together).  I then discuss some of 
the limitations of the engineering method by considering an apparently simple class of 
MAS that nonetheless is, in general, intractable to methodical and effective design 
methods (the limitations of the adaptation method being fairly obvious).  In contrast I 
show that these systems can be adapted to serve defined (albeit simple), purposes 

                                                           
1 To be clear, it is not that Zambonelli and van Dyke in [19] don’t see a need for a change in 

method as well as the change in system type, but that they do not see such a need to depart 
from the engineering approach to the extent I am suggesting. 



using an evolutionary algorithm.  These two sections lead on to the conclusion that we 
will necessarily have to develop and deploy systems for which there is no complete 
understanding based on its design.  Such systems (and many others) will have be 
understood as we do with other ‘ready-made’ systems in the natural world: by 
hypothesis and experiment.  I then sketch how such a natural science of self-organised 
systems may be used to achieve fallible but high levels of reliability and (relatively) 
safe system reuse.  I end by giving a short example to illustrate this before I conclude. 

2. Two Approaches for Obtaining Useful Systems 

There are two basic ways of getting a useful system: by designing and then 
implementing it so as to construct it (what I will call the “engineering approach”); or 
by taking some existing system and then manipulating it until it is good enough (what 
I will call the “adaptive approach”).  I briefly explain these approaches which are then 
illustrated in figure 1, before considering their combination. 

2.1 The Engineering Approach 

The engineering approach seeks to develop a series of methods so that the resulting 
construction is as useful as possible when the construction is finished.  For example 
the processes by which a steel girder is made is such that, probably, it will have 
certain physical characteristics when made (torsion strength etc.).  This approach 
focuses on what can be done before the system has been constructed, thus it 
concentrates upon developing methodologies and practices to obtain to its goals.  
These methods may be based to some extent upon an underlying theory of systems 
and system construction, but on the whole they are systemisations of what has been 
found to work in the past.  Thus essentially one relates what one wants to methods 
that have been found in the past to produce this and makes a plan and then 
implements it to achieve the result. 

2.2 The Adaptive Approach 

The adaptive approach takes an existing system and seeks to interact with the system, 
going through a cycle of testing its current properties and changing it, until it is 
acceptable.  For example, one may train a dog so that it acquires the behaviours and 
habits that you need to guard your house (barking at strangers etc.). As with the 
engineering approach, this may be based upon some theory of the system or it may 
just be a matter of trial and error.  This approach focuses on what can be done with a 
system after it is constructed and is done by comparing current properties against the 
desired properties and deciding what changes might move it from having the former 
to achieving the later. 
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Fig. 1. An illustration of the engineering and adaptation phases before and after system creation 

2.3 Combining the Two Approaches 

Of course, the two approaches are usually used together, and this is shown in figure 1.  
Thus however carefully a steel girder is constructed using established methods, it is 
tested for flaws before being used.  Similarly one often has to make an initial system 
in order to be able to start adapting it and one often employs the engineering approach 
when one wants to structurally adapt parts of an existing system.  Furthermore these 
approaches are often combined at different levels: engineering a bridge uses basic 
design forms which have been developed by a process of adaptation; and adapting the 
design of a car uses pre-engineered parts. 

In the production of software systems, one typically first applies the engineering 
approach and then follow this with the adaptation approach – “10% implementation 
and 90% debugging”, as the adage goes.  However, this is not always the case for 
sometimes these occur in different combinations.  For example, one might be faced 
with a legacy system, in which case one might be limited to the adaptation approach 
plus engineering additional wrappers, interfaces etc.  If the adaptation process fails to 
get the system up-to-scratch one might be forced to re-engineer substantial sections of 
the system.  Also these approaches might be used at different levels: thus one might 
engineer a mechanism to adapt some software; or train a human to engineer a 
compiler; or construct code from a higher level language etc. 



2.4 Using the Approaches Separately 

Despite the fact that these two approaches are most effectively used together, there 
are large sections of computer science dedicated to eliminating the need for one or 
other of them.  Thus genetic programming and other techniques in Machine Learning 
minimises the engineering phases at the object level, starting with randomised 
systems and adapting them from there.  Similarly the formal methods community 
seems to wish to eliminate the adaptation phase and reduce system production to 
purely the engineering phase.  This unfortunate trend has been exacerbated by two 
factors: firstly, the split between the AI and ML communities with their different 
conferences, journals, approaches, traditions etc. and, secondly, the formalist trend in 
computer science which attempts to reduce the adaptation phase by making the 
engineering phase a formal science akin to mathematics or logic.   

3. The Insufficiency of Engineering for SOSS 

Elsewhere [6], Joanna Bryson and I criticise an over-reliance on formal design 
methods, where the engineering approach is focussed on to the exclusion of 
adaptation.  There I show a number of formal results, which are basically simple 
corollaries of Gödel [8] and Turing [18].  These can be summarised as follows: for a 
huge range of specification languages (e.g. those that essentially include arithmetic): 

1. There is no general systematic or effective method that can generate or find a 
program to meet a given specification. 

2. There is no general systematic or effective method that, given a formal 
specification and a program, can check whether the program meets that 
specification. 

Where “general systematic of effective method” means one that could be 
implemented with a Turing Machine. These results hold for the overwhelming 
majority of classes of systems, including all those which include integer arithmetic.  
This illustrates the ‘gap’ between formal specifications and programs – a gap that will 
not be bridged by automation.   

To illustrate how simple such systems can be, I defined a particular class of 
particularly simple MAS, called GASP systems (Giving Agent System with Plans).  
These are defined as follows.  There are n agents, labelled: 1, 2, 3, etc., each of which 
has an integer store which can change and a finite number of plans (which do not 
change).  Each time interval the store of each agent is incremented by one.  Each plan 
is composed of: a (possibly empty) sequence of ‘give instructions’ and finishes with a 
single ‘test instruction’.  Each ‘give instruction’, Ga, has the effect of giving 1 unit to 
agent a (if the store is non-zero).  The ‘test instruction’ is of the form JZa,p,q, which 
has the effect of jumping (i.e. designating the plan that will be executed next time 
period) to plan p if the store of agent a is zero and plan q otherwise.  Thus ‘all’ that 
happens in this class of GASP systems is the giving of tokens with value 1 and the 
testing of other agents’ stores to see if they are zero to determine the next plan.  This 
is illustrated in figure 2. 
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Fig. 2. An illustration of the working of GASP MAS: Each agent has a single store and a fixed 
number of very simple plans composed of a list of “give one” instructions and a final one of “if 
agent x’s store is zero the go to plan a next, else plan b”. 

However GASP systems have the same power as Turing machines, and hence can 
perform any formal computation at all (a proof outline of this can be found in [6]).  
Since GASP systems are this powerful, many questions about them are not amenable 
to any systematic decision procedure.  In particular, the above two results hold.  Thus 
formal design methods can not provide a complete solution for system construction, 
and may only be effective for relatively simple systems.   

Part of the problem seems to be the illusion that computational systems are 
predictable, simply because at the micro-level, each step of a computation is 
predictable.  However, as the example of GASP systems shows, this is not the case.  
For even though working out what may happen next at any given stage is simple, it is 
impossible to compute many general aspects of their behaviour, from whether two 
machines will have the same effect in terms of their stores to whether a given machine 
will ever stop [4].  Thus we must give up the over-ambitious aim of complete reliance 
on the engineering approach when we consider MAS of even minimal complexity, 
and certainly for self-organised systems. 



4. Producing Self-Organised Software Systems (SOSS) 

Since we can not totally rely on designing self-organised MAS we need to consider 
also using adaptation as a principle method of useful system production, and not just 
as an after-thought to “fine tune” and “debug” systems we have already engineered.  
To show the possibility of this I have evolved GASP systems to perform some simple 
tasks.  These use a simple and untuned evolutionary algorithm with small populations 
of simple GASP systems over relatively short time runs, but nonetheless develop the 
desired properties.  Of course, people have been evolving computational systems for 
about 40 years.  The purpose of this section is to show: (1) that this can be done in 
very simple but effective ways with systems that are Turing-complete2; and (2) that 
this can be done with a MAS. 

The evolutionary algorithm was extremely simple.  A population of GASP systems 
were evolved. Each generation 1/3rd of the GASPs with the best fitness were 
preserved unchanged, the 1/3rd with worst fitness were culled, and the best 2/3rds 
mutated (with a 10% chance of any number in any plan being replaced by a new 
random number of the appropriate range) and entered into the population.  This is 
called “Evolutionary Programming” [7] it can be seen as sort-of stochastic hill-
climbing algorithm on a population.  The algorithm is illustrated in figure 3. 
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Fig. 3. The simple evolutionary algorithm applied to evolve GASPs: each generation the 
GASPs are ranked; the top 1/3 elected; the top 2/3 mutated; and the bottom 1/3 culled. 

This does not produce “open-ended” evolution, as can occur in Genetic 
Programming [11, 12], since the length of plans, the number of plans and agents is 
fixed.  This could be fixed by including an operator to possibly increase these – this 
would probably result in the discovery of more sophisticated solutions [15]. 

                                                           
2 An interesting approach to evolving Turing Complete machines is [16,Error! Reference 

source not found.]. 



4.1 Task 1: Long periodic pattern development 

To show that GASP systems producing outputs of increasing complexity can be 
evolved, I defined the fitness function as the period that the GASP system settled 
down into (if it did, the maximum otherwise) in terms of changes in the agents’ stores.  
Thus each generation I ran each of 24 GASP systems for 500 time periods and at the 
end determined the period of repetition of the system.  That is how far back one has to 
go to reach the same pattern as the last one.  If there was no evidence of any such 
pattern (i.e. if the GASP does settle down to any repetitive behaviour so the time of 
the onset of this behaviour + the period of the repetition is > 500) it was accorded the 
maximum fitness and the evolution was halted. 
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Fig. 4. The evolution of a GASP with a resulting repetitative period of over 500 time periods in 
366 generations, with a population of 24 GASPs, each with 10 agents, each with 5 plans, each 
of which have ‘give lists’ of up to 3 instructions long (plus a “test for next” instruction). 

The ease with which a GASP may be evolved to exhibit long periodic behaviour is 
strongly related to the number of agents and plans.  A similar population of 24 GASPs 
of 10 agents, each with 10 plans achieved a periodic behaviour of greater than 1000 
iterations in only 24 generations.  In similar experiments I was able to evolve GASPs 
with periodic behaviour with high prime factors (there is an example in the appendix). 

All that this shows is that it is feasible to evolve GASPs of increasing complexity.  
The next task is more difficult and more suited to the distributed nature of GASPs. 



4.2 Task 2: Anti-avalanche defence 

The next task chosen is better suited to the nature of GASP systems, that is the 
distribution of their stores.  The task here is to distribute its stores among its agents so 
that half of them have stores that are greater than those generated by an accumulating 
score to which shifting avalanches contributed to.  One can think of the agents piling 
up the defences to keep out increasing piles of snow resulting from the avalanches.  
These avalanches are generated by a self-organised critical system and is known to 
produce avalanches whose distribution follows a power-law, and which is very 
difficult to predict [1].  The task of the GASP is to redistribute the units that are fed 
evenly (one to each agent) to the correct places to counteract the accumulating results 
of the avalanches.  This is a continual race – the GASP is evaluated over its success at 
maintaining this over 25 cycles, but each time there may be a different pattern of 
inputs to the avalanche and a different pattern of avalanches.  The overall set-up is 
illustrated in figure 4. 
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Fig. 5. An illustration of the target problem – the job of the agents in the GASP is to have more 
in their store that the corresponding accumulators receiving the results of the avalanches 

The avalanche generator is a version of the basic ‘sand-pile model’ investigated by 
Per Bak and others [1].  It comprises of a set of piles, such that when a pile gets above 
a critical height it topples over onto adjoining piles, possibly causing them to topple 
etc.  Units are constantly added, in this case to a pile along the ‘top’ edge.  In this 
version when piles topple the units ‘fall’ randomly onto the three piles in the next row 
down in the adjoining columns (as illustrated in figure 4).  The result is that the 
avalanche generator outputs, on average, the same number of units as was input but in 
irregular avalanches of various sizes.  This makes it a difficult task to learn because 



the best GASPs in the long term will be those that ignore the particularities that give 
selective advantage in a single generation, but rather learns a more general strategy. 

To the advantage of the adaptive approach I set up the evolution so that the 
problem it is trying to solve changes during the evolution.  The two versions of the 
problem are the ‘variable input’ and the ‘fixed input’ problem.  In the variable input 
problem the input to the avalanche generator remains at a certain column position for 
a random number of iterations (in the range [1,10]) and then relocates to another 
randomly chosen position.  This means that the avalanches will result with more 
being accumulated in the columns adjoining to the input position wherever it is, so in 
the variable problem this will change every now and then.  In the fixed input problem 
the input is always at the first column, so there will be more long-term bias to the 
same output accumulators. Thus the variable input problem is more difficult to solve.  

The GASPs were evolved against the variable input problem for the first 100 
generations, then against the fixed input problem for 100 generations and back again 
to the variable input problem for the last 100 generations.  In each generation the 
GASP is evaluated against 30 iterations of the GASP and avalanche generator.  Each 
generation the avalanche generator is differently initialised with piles of random 
height below the critical height so the exact avalanche patters will be different every 
time – thus this is far from a static problem!  Figure 6 show the success of this 
evolution over 31 runs. 
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Fig. 6. Statistics showing the extent that the evolved GASPs covered the incoming avalanches 
(max=150).  These are over 31 runs of the evolutionary algorithm, each with a population of 12 
GASPs where each GASP is evaluated over 30 iterations.  Bottom line shows the average over 
the 31 runs of the average coverages, next line the average of the maximum coverages and the 
top line the maximum of maximum coverages. 

As you can see, the GASPs evolve over the first 100 generations until they have 
learned to cover the avalanches to a certain extent.  Then when the problem 
unexpectantly changes at generation 100 and becomes easier they quickly adapt to 



this.  Finally when the problem is switched back to the variable input problem at 
generation 200 they have to relearn to cope with this (although this is much quicker 
than for the first time).  This illustrates how an adaptive system (involving continual 
evolution) may be able cope with the unexpected better than an ‘one-off’ solution 
(however constructed).  Simply taking the current best GASP is a crude way of using 
the learning achieved by the whole system, there are better ways (e.g. [15]). 

One can imagine this sort of system being applied to combat fraud where the type 
of fraud is being continually innovated.  Beating a system that continually evolves is 
much more difficult than beating a static target.  If the fraudsters (or virus writers!) 
invent systems to continually evolve their agents this might be the only effective 
defence.  This is being investigated in the sub-field of artificial immune systems [3]. 

5. Putting the Production of SOSS onto a Sound Basis 

If I am right that many SOSS will be evolved to a considerable extent rather than 
purely designed, and that formal methods will not be able to ensure that such systems 
meet their specification, then we are left with a problem.   

This problem is: how are we to ensure that the systems we produce will perform 
satisfactorily when they are deployed in their operating context?   

The answer I suggest is this: by systematically applying the classic experimental 
method used in the natural sciences. 

In other words, that we should make explicit testable hypotheses about the 
important characteristics of the systems we produce (by whichever means) and test 
these experimentally to determine: (1) their reliability and (2) their scope (i.e. the 
conditions under which they hold.  These hypotheses should accompany the systems’ 
publication, and be used by those who are considering using that system. 

In addition to the hypotheses should be sets of conditions under which it has been 
tested.  Thus if a system has been run repeatedly using a certain range of parameters 
and other settings, in certain conditions and it was found that in these circumstances 
the hypotheses held, them these circumstances should be appended to the hypotheses.  
As the system is tested in more circumstances this set should grow.  When someone 
who wants to use the system for the properties listed in the hypotheses they should 
check that the circumstances it will be deployed under are covered by one of those 
that are listed as having been tested.  If they are not, the person has the choice of 
either testing it themselves (and adding to the list if successful) or choosing another 
system.  In this way there will be a slow co-evolution of the code, the hypotheses and 
the list of conditions as a result of the interaction of those using the system.   

One can imagine some sort of open-access distributed repository and database for 
such systems, hypotheses and conditions of application.  Programmers (or system 
growers!) would place their systems in the repository with the normal documentation 
and some hypotheses and tested conditions of application. Others would test it under 
new conditions as they needed to and add this information to the database.  Useful 
systems that were found to be reliable under sufficiently wide conditions would get to 
be used and test a lot – systems whose scope was found to be narrow would be passed 
over.  Eventually new versions of these systems would be made and the process 



continue.  Such a system would be a natural add-on to the distributed way some open-
source code is developed.   

It should be now clear how this is simply an application of the ‘classic’ scientific 
experimental method.  The world of software systems is one about which hypotheses 
are made, tested and developed.  The crucial test of a system is not its relation (if any) 
to a designer’s intentions for it but its proven performance in terms of the hypotheses 
about it. This marks a shift of emphasis away from verification to validation.   

Now, of course, the method of construction and/or the process of adaptation are 
good sources for these hypotheses about system behaviour, but they are neither 
necessary (the only sources) nor sufficient (they can’t be relied upon to be correct).  
Other hypotheses might come about solely from observing their behaviour (and 
maybe internal workings).  Some others might be special cases of more general 
hypotheses concerning identified classes of system.  A broad and important source for 
such hypotheses originate from other fields such as biology (e.g. Evolutionary 
Computation) or sociology (e.g. reputation-based mechanisms). 

Thus there is a loose relation between: the plan of construction; the theory about 
the system; and any adaptation plan.  For example: the system theory may be 
suggested by the construction plan; the adaptation plan may be informed by the 
system theory; the success of an adaptation plan may suggest a system theory; or a 
construction plan may be informed by the system theory.  This set of relations is 
shown in figure 7. 
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Fig. 7. An illustration of the relation of theory to the engineering and adaptation approaches. 



Of course, as in science, once a theory has become established (by being 
extensively and independently tested), it can then be used to deduce things about the 
systems concerned.  Formal deduction has a role with respect to whole complex and 
self-organised systems, but one that comes into its own only after a system theory has 
been experimentally established. 

6. Example Cases 

6.1 Hypothesising about systems in evolutionary computation 

There are areas of computing where something like an experimental method is widely 
applied, e.g. the field of Evolutionary Computation (EC).  For example [13] proposes 
several hypotheses about the causes of bloat in GP populations and then tests them 
experimentally.   This is indicative of the field.  Whilst there are a few formal results 
and models (mostly of fairly simple cases and systems), the majority of the work 
could be described as experimental.  Furthermore, in the sense that types of system 
are produced whose properties are broadly know and which are successfully applied 
in other systems and combined with other systems, it is successful. 

However, more generally the hypothesising in evolutionary computation is usually: 
(1) specific to performance on a particular set of problems and (2) does not include 
the scope under which the hypotheses are found to hold.  This makes it very difficult 
for a person considering applying such a system to come to a judgment upon its use 
for a different but similar problem.  The hypotheses about the system are specific to 
particular problems, so one has to guess whether it is likely to be applicable to the 
new problem; and you do not know whether the system performance will extend to a 
new scope.  Thus the reuse of such systems requires much individual 
experimentation. 

6.2 Hypothesising about tag-based SOSS 

‘Tags’ are features that are initially arbitrary but identifiable features of an agent that 
can act as a (fallible) indication of cooperative group membership, when part of a 
suitably evolutionary process.  They allow a dynamic but persistent maintenance of 
cooperation across a whole population even when defection is possible, without 
complex mechanisms such as: contracts, reputation or kin-recognition.  This can 
occur because cooperative groups with similar tags are continually forming and 
persisting for a period before being invaded by a defector (which quickly destroys the 
group).  Tag systems, and their possible relevance to SOSS are discussed in [10]. 

In common with many SOSS, tag-based systems are stochastic and fallible.  That 
is, there is always a probability that cooperative groups will not occur.  Thus one 
could never prove from its specification that the system would work as intended. 
However this effect seems robust over a range of settings and implementation 



variations.  Thus its seems a viable hypothesis that such systems will result in 
significant amounts of cooperation over a reasonably wide range of settings. 

David Hales has been working on such tag-based systems, work in which I have 
played a small part.  As a result of inspecting the results of such systems, several 
hypotheses about the working of such systems, and hence the conditions under which 
cooperative groups might occur, have suggested themselves.  One such condition that 
has been recently identified [9] is that the rate of tag mutation must be greater than the 
rate of defection in (or into) a cooperative group.  This seems to be because it allows 
for new cooperative groups to form sufficiently often that there is always a significant 
‘population’ of pure cooperative groups before the defection occurs in them.  Thus 
although each group will inevitably be overrun with defectors, there are always 
enough cooperative groups in the total population to maintain the overall levels of 
cooperation.  Thus we not only have a hypothesis about a class of systems which has 
been observed, but also some of the conditions under which it is thought to occur, and 
a mechanism by which it is though to occur.  The information published might be:   

? ? S is a system whose description and/or method of production is described in 
sufficient detail to enable it to be made (at least with high probability), in this 
case one of the tag-based systems described in [10] or [9]; 

? ? Hi are the hypothesis about S that encode the useful properties, for example 
that “the percentage of co-operators in the overall population is at least 30%”; 

? ? Ci,j are the conditions under which each of Hi has been found to hold, for 
example:  “the mutation probability of the tag > mutation probability of 
defection”; 

? ? S i,j is additional information accompanying each of the Ci,j, for example: 
frequency of significance statistics concerning the occurrence of Hi under Ci,j. 

For SOSS that turn out to be useful, the Hi, and {Ci,j, S i,j} will be added and 
refined, making the particular system even more useful and hence tested.  Thus a 
‘meta-evolutionary’ process will take place with the useful systems becoming 
selected and tested, and the unreliable and brittle systems being passed over.  This is 
directly analogous to the scientific process as conceptualised by Popper [14]. 

7. Conclusion 

‘Engineering’ and ‘self-organisation’ do not sit well with each other.  The extent to 
which a system is engineered will constrain (as well as enable) what kind of self-
organisation can occur.  Likewise the extent to which self-organisation occurs will 
limit the scope for engineering since outcomes will be correspondingly undeducable.  
In other words, self-organisation will result in outcomes that are not (and can not be) 
foreseen by any designer.  Thus with self-organised systems there will always be the 
possibility of an unwelcome surprise.  These surprises will often have to be dealt with 
by adapting the system after its creation.  If we are to do better than trial and error in 
such adaptation we will need to develop explicit hypotheses about our systems and 
these can only become something we can rely on, via replicated experiment.  This 
paper can be seen as an exploratory step towards such an experimental method. 
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10. Appendix – an example GASP 

This is an example of a simple GASP evolved to have a repetitative period of 89.  
First I list the plans of the agents (agent, plan number, give list, test agent, then, 
else).  This is followed by a graph showing the cycle in 3 of the stores. 
1, 1, [], 5, 3, 2 
1, 2, [], 4, 2, 1 
1, 3, [], 5, 2, 4 
1, 4, [1], 3, 2, 4 
1, 5, [3 4], 2, 1, 5 
2, 1, [], 5, 4, 3 
2, 2, [], 4, 2, 4 
2, 3, [3 6 6], 1, 5, 1 
2, 4, [6 5 4], 2, 2, 3 
2, 5, [6 3 3], 3, 3, 2 
3, 1, [], 4, 3, 1 
3, 2, [6], 5, 3, 4 
3, 3, [3 4 2], 3, 3, 4 
3, 4, [4 4 5], 1, 3, 5 
3, 5, [3 6], 1, 2, 1 
4, 1, [], 1, 3, 3 
4, 2, [], 1, 5, 5 
4, 3, [3 3], 3, 3, 5 
4, 4, [2], 1, 3, 1 
4, 5, [3 2], 5, 5, 4 
5, 1, [3 2 2], 5, 3, 5 
5, 2, [1 6], 2, 3, 1 
5, 3, [3 1 5], 2, 2, 4 
5, 4, [1 2 1], 5, 1, 4 
5, 5, [4 4], 4, 4, 4 
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