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As far as the laws of Mathematics refer to reality, they are not certain;  
and as far as they are certain, they do not refer to reality (Albert Einstein1) 

We discuss the implications of emergence and complexity for the engineering 
of MAS.  In particular, we argue that while formalisms may play a role in 
specification and implementation of MAS, they do not provide predictive 
power in complex systems.  Thus we must look to other tools for understanding 
these systems.  Statistical methods may go some way to helping us, but they too 
have their limitations. Rather, we argue that we must revert to classic scientific 
method: observing the systems, positing theories and hypotheses, then testing 
and improving them.  That the study of complex MAS has to be more of a 
natural (as opposed to formal) science.  This has the consequence that there will 
be severe limitations on the extent to which one can “design” complex MAS.  
We illustrate this case with two examples of MAS, both of which display 
system level dynamics that cannot directly be predicted from the behaviour of 
individuals.  We call upon those in the ESOA community to explicitly reject 
those tenets that are only useful with simple MAS. 

1. Introduction 

Consider farmers. They may know their animals, crops and land in some detail, but 
are under no illusion (recreational farmers from the city apart) that designing a farm 
to work well would contribute more than a small part to its success.  Rather they 
understand that they have to always be monitoring their farm, acting upon it 
repeatedly to try and get acceptable results.  This is not an exercise in careful planning 
but more of a continual exercise in disaster management.  In such a situation, new 
ideas cannot be assessed on the grounds of reason and plausibility alone (including 
those suggested by scientific advisors) but have to be tried out in situ.  Solutions are 
almost never permanent and universal but rather a series of tactics that work for 
different periods of time in particular circumstances.  Techniques that are seen to 
provide real benefit (even if that benefit is marginal) are adopted by others in the 
community so that, in the longer run, a community of effective practices evolves.  
This paper suggests that in order to get complex MAS to work well we have to learn 
to be more like farmers and less like mathematicians. 

                                                           
1 As quoted in J R Newman, The World of Mathematics (New York 1956) 



The argument proceeds as follows: Section 2 makes clear what we mean by the 
ideas of syntactic complexity, unpredictability and emergence, arguing that emergent 
phenomena can not be formally reduced to system properties; Section 3 argues that 
this kind of complexity does occur in MAS-like systems and discusses some of the 
consequences in terms of these systems; Section 4 looks at some of the possible 
tactics researchers might take in tackling these sorts of systems; Section 5 exhibits 
some examples to illustrate the points made; and we conclude in Section 6 calling on 
the ESOA community to explicitly reject approaches that only work for simple MAS. 

2. Complexity, unpredictability and emergence 

In this section we discuss and define unpredictability, complexity and emergence wrt. 
MAS.  In particular, we want to show that: just because a particular emergent feature 
is caused by the mechanisms and set-up of a MAS and that each micro-step is 
completely understandable in a deterministic way, this does not mean that the 
emergent feature is reducible to the mechanisms and set-up.  It may be the assumption 
that “predictability” scales up from the micro to the macro that is behind much 
confusion in the software world.  As Philip Anderson put it “More is Different” �[1]. 

Complexity has many different definitions and meanings.  This is because the 
complexity of a system is relative to the type of difficulty that concerns one as well as 
the frame/descriptive language in which that system is represented �[7].  In this case 
we would characterise the syntactic complexity of a complex MAS system as the 
“computational distance” from the set-up of a MAS to the resultant behaviour at a 
later point in time, that is the minimum amount of computation necessary to 
determine a certain aspect of a complex MAS’s behaviour given the initial conditions, 
set-up, plans, programs etc2.  If an easy-to-calculate short-cut to do this exists we say 
that this aspect of the MAS’s behaviour is simple.  On the other hand if the shortest 
way to determine this is by running the MAS up to that point then it is (syntactically) 
complex.  In the section below we will argue that many of the MAS that the ESOA 
community deals with are complex in this sense. 

Clearly syntactic complexity can make it infeasible for an actor/agent with 
computational limitations to predict future behaviour, even if it has the full details of 
the initial set-up and any subsequent environmental inputs.  In particular, if we wish 
to be able to predict the behaviour of a class of such set-ups without simulating each 
one then the presence of such complexity makes this infeasible to do directly.  Thus 
syntactic complexity can be cause of effective unpredictability.  Pseudo-random 
number generators are an example of this in practice – their syntactic complexity 
makes their output unpredictable and arbitrary in practice. 

Emergence occurs when some significant behaviour occurs that (a) is not reducible 
to the details of the system set-up (otherwise it would not be new), but yet (b) is 
totally consistent with those details (otherwise it would not be from the system).  
Clearly both (a) and (b) being the case is impossible purely within a simple formal 
system.  Rather what tends to happen is: since in a system of high (possibly infinite) 

                                                           
2 This is similar to “logical depth” �[4] but without the stipulation that the program be minimal. 



syntactic complexity the behaviour is not predictable from the set-up then observed 
behaviour that appears significant to an observer is described in a different type of 
language to that of the detailed interactions in the system.  Since this description 
represents observed behaviour of the system it will be consistent with its 
implementation, but because it is in a different language, it will not be reducible to 
descriptions of the implementation.  For example, in Schelling’s model of racial 
segregation �[26] the implementation is in terms of counters on a checkerboard and 
when they move, but the emergent behaviour that of the global segregation observed 
as a result, even at high levels of tolerance �[13].  This is illustrated in Figure 1.   

 

Set-up 

Higher-level Description 

Simulation 

Abstraction 

 
Figure 1.  Emergence resulting from syntactic complexity plus abstraction  

3. Complexity in MAS 

Emergence and unpredictability are inevitable features of complicated systems 
(including MAS), even if they are deterministic and perfect implementations of the 
programmer's intentions.  This can be seen be looking at some formal systems which, 
although simpler, than most MAS can be easily mapped into MAS. 

In �[27] Wolfram exhibits a Cellular Automaton (CA) which produces a seemingly 
random binary sequence in its central column, in a deterministic manner from a given 
initial state.  Of course, since this is a deterministic system and one has “run” it before 
with a particular initial state then one knows (and hence in a sense can ‘predict’) what 
sequence will result, but if one only knows what resulted from similar (but not 
identical) initial states then there seems to be no way of knowing what will result 
before hand.  Of course this is true of any pseudo-number generating program, the 
point is that, in this case, it would be easy to design an MAS with the same properties 
using essentially the same mechanism, so that what it had done in the past would be 
no guide as to how it behaved the next time.   



 
Figure 2. CA rule 30 whose central column is essentially random (left shows rule and detail) 

Of course it is very difficult to prove a negative, namely that there is no “short cut” to 
determining such a system’s behaviour without doing the whole simulation.  So, 
despite the available evidence, it is always possible for people to simply assert that 
there must be some way of doing this.  However there is formal evidence against such 
a hope in the form of Gregory Chaitin’s proof that there are mathematical truths 
whose simplest proof is as complicated as the truth itself �[6].  For these truths there is 
no short-cut, no underlying, simpler reason why they are true.  In fact Chaitin’s 
construction shows that all but a vanishing number of such truths are like this, so that 
those that are explainable by a simpler construction are the tiny exception. 

These sorts of results are basically versions of Gödel’s results �[15].   In a sense 
Gödel’s results went further, they showed that (for most kinds of systems that MAS 
represent) that there will be true properties of such systems that are not provable at 
all!  That is that one might (correctly) observe properties of such a system that are not 
reachable in terms of a formal approach.  In MAS terms that means that there may 
well be some emergent properties of deterministic MAS as they run that can not be 
proved within any particular logic or formal system.  Similarly Wooldridge shows in 
�[29] that, even in finite MAS the design problem is intractable (PSPACE complete). 

Of course, the situation is even worse in the real world where there are essentially 
non-deterministic factors from a variety of sources, including: actions from 
actors/agents of unknown composition and goals, random inputs, chunks of legacy 
code which have insufficient documentation but are still used, bugs, and machine 
limitations.  That computer systems of any complexity have unpredictable and 
emergent features, even isolated and carefully designed systems, is part of our 
everyday experience.  That it is even more difficult to get complicated MAS systems 
to behave in a desirable way than traditional isolated and deterministic code is also 
part of our everyday experience.   

Indeed Nick Jennings explicitly suggested that we stop MAS becoming too 
complicated in order to try and maintain the effectiveness of the design tactic.  For 
example, in �[22] his advice includes (among others): 

• Do not have too many agents (i.e. more than 10); 
• Do not make the agents too complex; 
• Do not allow too much communication between your agents. 

These criteria explicitly rule-out the kind of MAS that are studied in the ESOA/ESOS 
community as well as all those in any of the messy environments characteristic of the 



real world where they may be used.  These rules hark back to the closed systems of 
unitary design that the present era has left way behind.  What is surprising is not that 
such systems are unpredictable and, at best, only partially amenable to design-based 
methods but that we should have ever thought that they were.   

4. Responses to complexity in MAS 

So, given this situation, what can we do to try to get complex MAS systems to behave 
within desirable constraints?  We consider some of the possibilities below. 

The formalist answer is to attempt to use formal methods to make the engineering 
of MAS scientific.  As Wooldridge says in �[28] just after pointing out the difficulty of 
validating the BDI framework: “Fortunately we have powerful tools to help us in our 
investigation” and goes on to discuss BDI logics. This is not and cannot be a 
sufficient answer.  Rao and Georgeff noted some years earlier, there is a considerable 
gap between BDI theory and practice �[25] and �[12] proved that formal methods are 
insufficient for the design of any but the simplest of MAS (e.g. those without 
arithmetic).  Hence complete formal verification is only possible for the very simplest 
MAS components and almost no MAS systems that would help solve real world 
problems.  However formality can help in some more mundane ways, namely: 

1. Providing a precise and lingua-franca for engineers for specifications and 
programs (allowing almost error-free communication); 

2. Allowing for specifications and programming to be manipulated in well-defined 
and automatic ways; 

3. Facilitating the inclusion of consistency checks within code to prevent or warn 
of some undesirable outcomes; 

4. Provide a stable and expressive framework/language for developers (or 
community of developers) to gain experience and expertise in. 

What is important is to abandon the delusion that formal proof will ever be a major 
component in generating or controlling the complex system level behaviour that we 
see in real world problems. 

The statistical approach is another way of getting at apparently disordered systems.  
The first step is assuming that the system can be considered as a set of central 
tendencies plus essentially arbitrary deviations from these.  The idea is that although 
one might not be able to predict or understand all the detail that emerges from such a 
system this does not matter if there are some broad identifiable trends that can be 
separated from the “noise”.  Thus far is fairly uncontroversial3, but more problematic 
is the next step typically taken in the statistical approach, that of making assumptions 
about the nature of the noise, usually such as its independence, randomness or 
normality.  That these are suspect for complex MAS is indicated by systems which 
exhibit “Self-Organised Criticality” (SOC) �[3].  �[23] list some criteria which indicate 
when SOC might occur. When these are interpreted as a MAS they come out as: 

                                                           
3 �[10] argues that, although this sort or separation may be an inevitable consequence of the 

structure of our cognition it is not without its complications and traps. 



• Agents are metastable – i.e. they do not change their behaviour until some 
critical level of stimulus has been reached; 

• Interaction among agents is a dominant feature of the model dynamics; 
• Agents influence but do not slavishly imitate each other; 
• The system is slowly driven so that most agents are below their critical states a 

lot of the time. 

Clearly this includes many MAS.  In such systems, one can not make the usual 
assumptions about the nature of any residual “noise”.  For example when one scales 
up Brian Arthur’s “El Farol Bar” model �[2] to different sizes and plots the variation of 
the residuals it does obey the “law of large numbers” as it would if it were essentially 
random.  That is the proportion of the variation to the system size does not reduce 
with increasing systems size, as would happen if the residuals were random, but a 
substantial residual variation remains.  This is shown in �[8] which was suggested by 
the results of �[24].  In this model a fixed number of individual’s have to decide 
whether or not to go to the El Farol Bar – basically they want to go if others do, but 
not if many others want to go.  They make their decision in a variety of ways based 
upon the past history of attendance numbers.  This sort of system results in a sharp 
(SOC) attendance patterns around the “break-even” point.  The variance in this 
attendance is plotted in Figure 3 – one can see that this shows no evidence that the 
variation around the central tendency is dropping as a proportion of system size as the 
system gets larger.  This means that the “noise” is not random and its distribution may 
well have undefined moments (which can invalidate many standard statistical 
techniques such as regression). 

 
Figure 3.  A plot of scaled standard deviation against different population sizes averaged over 
24  runs over 500 cycles for each point in the El Farol Bar model �[2].  The solid line connects 
the observed values; the dashed line what one would expect were the deviations were random. 

Here care should be take to distinguish between descriptive and generative statistics.  
In descriptive statistics one is simply describing/summarising a set of known data, 



whilst in generative statistics a data-generating process is encapsulated which is 
supposed to be a model of an observed data stream.  Thus, in the latter case, there 
must be some sense in which the statistics are a model of the source of the observed 
data.  So, for example, if one does have a SOC system which is producing a stream of 
data with no defined second moment, then positing a distribution with a defined 
second moment would be a fundamental misrepresentation.  Whereas any finite set of 
data obtained from this source will have defined second moment, which might be a 
meaningful description of the data form some purposes (e.g. in comparison with a 
different set of data from the same source and with the same length). 

The infeasibility (and even impossibility) of using formal or statistical techniques 
to predict what a complex MAS will do based on fundamental principles leaves us 
with a problem, namely: what can we do to understand and manage complex MAS? 

The short answer is the use of the classic scientific method: observing MAS, 
positing theories and hypotheses; then testing and improving them.  In this case the 
“theories” usually consist of simulations at different levels of abstraction4 and the 
hypotheses usually expressed in the “higher-level” descriptive framework described 
above.  Indeed there will typically need to be a series of simulations at different levels 
of abstraction.  This multi-layered simulation approach was suggested in �[9] (among 
others) and put into practice in �[20], where a sequence of simulations models goes 
from the abstract to real applications.  In this way the understanding of complex MAS 
would become more of a "natural" (as opposed to formal) science.   

5. Examples 

The following examples serve to illustrate the points made above within practically 
realisable settings and systems. 

5.1 Population Dynamics in Tag-Based Group Maintenance 

This example is a evolutionary simulation of cooperation among essentially selfish 
but specialised individuals, with the added structure of observable (but initially 
arbitrary) “tags” �[21].  This is continuation of a stream of research (e.g. �[16], �[17], 
�[18], �[19]) mostly done by David Hales. This simulation is a plausible abstraction of 
any evolutionary MAS with limited resources and where there are specialised skills – 
so that the dynamics seen in this simulation could well occur in observed complex 
MAS.  The point of exhibiting this in this paper is not the detail of the substantive 
results, but that the characteristics where not predictable before doing simulation 
experiments but amenable to hypothesis after observation of the simulation results. 

The simulation has the following characteristics: 
• There is a varying population of individuals, each of which has a particular 

skill {1,… numSkills}, an observable “tag” in [0, 1], a tolerance value in [0, 
maxTol], a store for each kind of resource [0, maxStore]; 

                                                           
4 The fact that the theories are expressed in the form of simulation models does have some 

further consequences in terms of methodology, for more on this see �[13]. 



• Individuals can harvest, store and redistribute a limited stream of resources 
into the model of several types; 

• Individuals can only harvest the type that corresponds with their skill, but can 
receive, store and redistribute any type; 

• Whether individuals survive and/or reproduce depends upon their level of 
resources (survive if all types > 0, reproduce if all > 4); 

• Each cycle the following occurs:  each individual gets an equal share of the 
available resource type depending on its skill; is randomly paired with a fixed 
number of others and donates any excess of any resource (>5) if their tag is 
strictly within their tolerance value of its own; individuals die; individuals 
reproduce with possible mutation of tags and tolerances. 

Thus to survive and reproduce one has to receive donations from others with 
resources who have sufficiently similar resources.  There is a social dilemma here: it 
is in the interest of individuals to have a small (or even zero) tolerance and not donate 
resources to others, but to have a tag ‘close’ to others with a sufficient tolerance so as 
to receive donations.  The point is of the simulation is whether and how groups with 
similar tags arise (“tag groups”), in other words if and how mutual cooperation 
occurs.  To summarise the results: groups of cooperating tag groups do arise and 
survive for a period but eventually collapse until another group arises.  A more 
detailed account of this model is given in �[11]. 

To give a flavour of some possible resultant behaviour we show the results from a 
single run (with the following parameter values MaxReservoirSize=7.5; 
MaxTollerance=0.1; FoodEachCycle=200; NumSkillTypes=3; 
NumPairingsPerCycle=6; ProbMutuation=0.05). 

 
Figure 4. The population size and donation level (proportion of pairings that result in a 
donation) during the first 450 cycles of a run of the simulation.  



Figure 4 shows the population size and donation level during the first 450 cycles of 
the simulation.  One can see that after 50 cycles the donation level (and hence the 
population) rises to relatively high levels.  The tight coupling between donation level 
and population level is due to the fact that death and reproduction is hardwired to 
individuals having the kinds of nutrition they can only obtain via donation.   
On examination of statistics like those shown in Figure 5 and visualisations of the 
individuals in the population as it develops, one can distinguish some different 
“phases” of the dynamics: (UV – unviable) where there is not significant donation so 
that the population is not in a self-sustaining state; (CE – coexistence) where the 
cooperative group of different subpopulations has been established; (PP – predator-
prey) where parasites (those with sufficiently small tolerance that they do not donate 
to anyone) have arisen and thus predator-prey dynamics increasingly dominate the 
dynamics until the population become unviable again.  That these phases occur and 
their nature are fallible hypotheses and are not provable from the set-up and initial 
conditions.  However now that they have been observed in many runs and set-ups 
then they can be modelled (to greater or lesser accuracy) based upon the 
understanding gained from that observation (and hopefully independently tested).   

 
Figure 5.  The number of individuals with each of the three skills in a sample run (the three 
lines of different shades of grey), illustrating some of the phases that can occur.  CE – 
coexistence; PP – predator-prey; and UV – unviable. 

Obviously if one was designing a similar MAS from scratch and wished to exploit the 
properties above, then the described simulation would be little more than a guide or 
analogy.  If one wanted a more reliable translation into the MAS then a more realistic 
simulation – somewhere between the abstract simulation above and the target 
application – would need to be built.  Thus we would have a hierarchy of models and 
implementations going from abstract hypotheses (possibly expressed in terms of 
population dynamics models of ecology) down to actual implementations.  This 
hierarchy is illustrated in Figure 6.   



Abstract Tag-Group Simulation 

Descriptive Simulation of MAS 

Complex MAS 

Equation-based Population Models 

 
Figure 6. A possible hierarchy of models and implementations 

The downside of this approach, is that it does not provide any certainties, any proof, 
that any particular theory will be useful for creating/managing a particular complex 
MAS, but rather one ends up with a set of fallible hypotheses, models or “rules of 
thumb” which can be used to guide system creation or management but which have to 
be tried out to check that this is, in fact the case.  An example of this is �[14] which 
suggests the fallible rule of dealing with cases where there is conflict between agents. 

5.2 Population Dynamics in Simulated Food Web Evolution 

This example involves a simulated ecosystem of abstract "species", where each 
species is defined by a set of features that, when compared against the features of 
other species, determines 'who eats whom.'  The individuals feed based on these rules, 
reproduce when they have sufficient resources, and die either when another individual 
kills them, or they reach old age.  The example is an agent-based simulation that is 
inspired by a system dynamics model of the same scenario �[5]. 

The features that are used to determine species can be conceptualised as things 
such as ‘sharp teeth’ or ‘fast runner;’ features which potentially could give the species 
an edge over other species.  As in Caldarelli et al.'s model, these features are defined 
abstractly, with K possible features, from which each species draws L features. 
Following the original, we have used K=500 and L=10.  To determine how each of 
these features fares against others, a KxK matrix is constructed and each position in 
the matrix is assigned a score with mean 0 and variance 1, where the value at (i,j) 
gives a score of how well feature i performs against feature j.  The matrix is anti-
symmetric (value (i,j) is the negative of (j,i)), and the diagonal has value 0. The score 
of one species against another is determined by taking the sum of the scores of the 
individual features, that is: 
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A single step in the model consists of: 
1. If the population is 0, a new individual is created, with a random new 

species.  
2. With some low probability, a single agent in the population is mutated. This 

involves selecting an individual and randomly modifying a single one of its 
L features.  This is known as a speciation event. 



3. The agents in the population are shuffled, then for each agent:  
a) The agent selects a prey, or the world, upon which it will feed, as 

follows: A random sample of n individuals is taken from the population. 
Then for each of the species in the sample, a weighted score is 
constructed dependant on the agent’s score against that species and the 
number of species in the sample. A weighted score is also calculated for 
the world resources, taking the number of available world resources and 
the agent’s score against the world into account. The agent then selects 
either an individual of the highest weighted species in the sample as its 
prey, or the world resources, if that has a higher weighted score than any 
species. 

b) The prey (or the world) is consumed, with the agent receiving a 
proportion of the prey’s resources, weighted both by the agent’s score 
against that prey (or the world), representing the effort required to 
kill/harvest. 

c) If the agent received enough resources while feeding (i.e. its total 
resources > 1), it will reproduce. Offspring are given 1 resource each; the 
agent has these resources subtracted from its own stores. 

4. Agents have their age incremented and any agents which are dead (due  to 
being killed by a predator or through old age) are removed from the  
population. 

This is a very simple model of food web evolution which is in its early stages of 
development, and although it is not clear yet how well it mimics naturally occurring 
food webs, it does display some behaviour which is expected yet unpredictable. 

As can be seen in Figure 7, many of the species that are created in speciation 
events fail to find a niche within the food web in which they can survive.  Others 
appear to find a niche, but experience sudden catastrophic declines in population.  
(Caused usually by over-harvesting their prey, or sometimes when a new species 
harvests the same prey more efficiently.) Still other species experience ebbs and flows 
in their population yet manage to survive for extended periods. 



 
Figure 7. The rise and fall of populations plotted as a proportion of the total population against 
time (in 100 of cycles) 

These types of patterns in the dynamics are not unfamiliar in fossil evidence, so in 
this sense they are expected.  However whether or not a speciation event will lead to a 
successful species depends very much on what other species are present in the 
population, and at what levels, at the time of its inception.  While it might be possible 
to determine the reaction of the food web to the introduction of a particular species 
given a particular state of the web, the overall dynamics of the system cannot be 
predicted.  Indeed, this reflects problems that are seen in the natural world, when 
foreign species are introduced into an ecosystem (either "accidentally", as in rabbits in 
Australia, or deliberately, as in cane toads, also in Australia).  The introduction of 
cane toads, as a pest control mechanism, is of particular interest. The intended result 
was to eliminate the pest.  The ongoing situation is considerable changes to the food 
web of northern Australia as the toads find alternative prey. 

MAS which use evolutionary techniques to achieve self-organisation will be prone 
to similar unpredictable population waves.  Whilst these can have major ramifications 
for the system efficiency (especially during transition periods) they are essentially 
unpredictable.  Learning how to manage such phenomena in complex MAS will 
necessitate a practical, experimental approach – the set-up of the system only provides 
limited information about its subsequent behaviour. 

6. Conclusion 

The wish for a “short-cut” to the production and control of complex MAS is strong, 
almost as strong as the wish for the production and control of MAS to graduate to 
being “proper engineering” with firm foundations in logic and formal methods.  But 
wishing does not make things true and one can only keep up the spin that we are 
“almost there” for a short period of time without substantive supporting evidence.   



However there is an alternative, an alternative that offers no certainties but has 
shown itself to be highly effective over the years – that of the classic experimental 
method driving the evolution, within a community of researchers, of well-defined but 
fallible hypotheses.  There is a place for design in the production and management of 
complex MAS, but it is not such a prominent one – rather the bulk of the progress will 
rely on trying out techniques and seeing which ones work, where they work and why.   

In particular we call upon those in the ESOA/ESOS community to explicitly and 
loudly reject those principles and approaches that are not applicable to the systems 
they are working with (even though they may applicable for other, simpler MAS).  
Namely to reject: 

• That formal proof will play a major role in their production; 
• That there is likely to be any “magic bullet” techniques with universal 

applicability for designing complex MAS; 
• That the validation, management and adaptation of complex MAS are 

secondary matters that can be significantly ameliorated by good design; 
• That the specify and design methodology is the only real way to proceed. 

Reading between the lines in many ESOA/ESOS papers that I have read, I think many 
in this community do reject these but have not openly declared this due to their wish 
to avoid dissonance with others.  However we argue that the ESOA/ESOS community 
will need to take a different path to that developed by the agent community over the 
last decade, putting it in the vanguard of the “software revolution” detected by 
Zambonelli and Parunak �[30].   
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