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1 Introduction 
Science is important, not only in the knowledge (and hence power) it gives humans, 
but also as an example of effective distributed problem solving that results in complex 
and compound solutions.  For even though it is usual for one or two individuals to be 
credited for any particular discovery in science, their efforts almost always use a host 
of results and techniques developed by other scientists.  In this sense all scientists 
"stand on the shoulders of giants" in order to "see a little further".  Thus, contrary to 
the architypal image of lone geniuses labouring to prove their ideas despite the 
opinions of thier colleagues, science is fundermentally a social activity.  A collection 
of individuals, however gifted, that did not communicate would not be able to develop 
science as we know it.  Even the earliest scientists such as Galileo were building on 
the ideas of others (Copernicus) and using the technology produced by others (the 
telescope).  Indeed some philosophers (e.g. [18]) have claimed that the only things 
that distinguishes the process of science from other social processes are its social 
norms and processes. 

These processes become the more remarkable, the more they are examined.  It 
turns out that science manages to implement many features that have been difficult to 
achieve in distributed AI and multi-agent systems.  These include: the spontaneous 
specialisation and distribution of skills accross the problem space; the combination of 
advances and results from many different individuals to form complex chains of 
inference and problem solving; the reliability of estabished results in comparison to 
the uncertain reliability of individuals' work; the spontaneous autopoesis and self-
organisation of fields and sub-fields, continually adapting to problems and degrees of 
success; the ability of science (as a whole) to combine "normal science", characterised 
by much cooperative work within a common framework and "revolutionary science" 
characterised by sharp competition between individuals and frameworks; and the 
ability of science to produce coherent developments of knowledge whilst, at the same 
time, maintaining variety and criticism so that it can quickly adapt to the failure of 
any particular developments.  All of this is achieved with a relative lack of: explicit 
central coordination; use of market mechanisms; global and explicit agreement about 
norms or methods; or well-defined hierarchies. 

Thus science is an important subject for study in its own right, and thus also its 
critical social processes.  The question is not so much that it is worth modelling, but 
how one approach modelling it in a useful way.  It is the aim of this paper to suggest a 
framework for a set of investigations that will advance such a project.  Thus the 
framework will be described as well as a first implemented instantation of the 



framework.  Although it is the framework which I consider more important, the 
exhibited simulation exhibits results that are interesting in their own right. 

Traditionally there is the ‘building-block’  picture of science [11] where knowledge 
is slowly built up, brick by brick, as a result of reliable contributions to knowledge – 
each contribution standing upon its predecessors.  Here, as long as each contribution 
is checked as completely reliable, the process can continue until an indefinitely high 
edifice of interdependent knowledge has been constructed.  However other pictures 
have been proposed.  Kuhn in [14] suggested that often science progresses not 
gradually but in revolutions, where past structures are torn down and completely new 
ones built.   

Despite the importance of the social processes in science to society, they are 
relatively little studied.  The philosophy of science has debated, at some length, the 
epistemological aspects of science – how knowledge is created and checked ‘at the 
coal face of the individual’ .  Social processes have been introduced mainly by critics 
of science – to point out that because science progresses through social processes it is  
‘only’  a social construction, and thus has no special status or unique reliability. 

Here I take a neutral view – namely, that it is likely that there are many different 
social processes occurring in different parts of science and at different times, and that 
these processes will impact upon the nature, quality and quantity of the knowledge 
that is produced in a multitude of ways and to different extents.  It seems clear to me 
that sometimes the social processes act to increase the reliability of knowledge (such 
as when there is a tradition of independently reproducing experiments) but sometimes 
does the opposite (when a closed clique act to perpetuate itself by reducing 
opportunity for criticism). Simulation can perform a valuable role here by providing 
and refining possible linkages between the kinds of social processes and its results in 
terms of knowledge.  Earlier simulations of this sort include Gilbert et al. in [10].  The 
simulation described herein aims to progress this work with a more structural and 
descriptive approach, that relates what is done by individuals and journals and what 
collectively results in terms of the overall process. 

2 The Simulation 

2.1 Motivation and Related Work 

The aim of this simulation is to suggest a set-up within which the social/interactive 
aspects of collective knowledge discovery can be explored.  It therefore contrasts with 
attempts to understand what a single scientist does, by modelling and philosophy.  
Computational models of aspects of the work of a single scientist include those of 
problem solving [21] and induction [12].  Implemented models which attempt to 
synthesise the essential processes of a single scientist more as a whole include 
BACON [17], Meta-DENDRAL [1] and PI [24] (this last providing the best general 
discussion on the project of computationally modelling science). 

There is a similar tendancy in the philosophy of science, with a historical 
concentration on what a single scientist does.  Social aspects of science have been 



brought in mainly as a critique of the “ received picture”  of science [11] – the 
argument is roughly that because social processes are involved in the construction of 
scientific theories, that scientific truths do not correspond to an objective truth.  

The philosophy of science has moved from a priori normative accounts (how 
science should work) to a postiori descriptive accounts, largely due to Kuhn’s account 
of how revolutions (“paradigm shifts” ) occur in science [14].  The exact nature of the 
social processes that occur in science are not, in general, condsidered.  Exceptions 
include: Tolmin’s book [25], a recent paper by Giere [9] and a book by Knorr-Cetina 
[13].  However, these processes are even more rarely modelled – the only exception I 
know that touches on this being [10]. 

The individual agents in the specific simulation below are fairly simple compared 
to some of the models listed above – I have concentrated instead on the flow of 
information between agents via a publically accessible repository (corresponding to a 
journal) and how the agents select what knowledge to learn and use.  This does not 
mean that a model with more sophisticated and realistic agents would not be better, 
just that I have not done this. 

2.2 The General Structure 
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Figure 1. An illustration of the set-up with two agents (circles are items of knowledge, 
rectangles are agents) 



The simulation involves a fixed number of agents (representing individual or closely 
collaborating teams of scientists) a journal (only one in the present simulation) which 
includes the set of formal sentences representing the knowledge that is discovered and 
published.  Each agent has a private store of knowledge which may or may not be 
public (i.e. an axiom or published) – this store is their working knowledge.  To use a 
public item of knowledge this must be added to their private store before they can use 
it to produce new items.  They submit some of this to the journal which selects 
(according to some criteria) a subset which is then published and becomes available to 
others.   The whole set-up is illustrated in Figure 1. 

 

2.3 The Environment and Task 

Science continually progresses into the unknown.  In science sometimes the end 
points are known – for example, when it is known that a certain disease is passed on 
genetically, then the genes that are responsible may be sought.  Often, however, 
scientific discoveries are a surprise to their discoverers.  Thus it is often the case that 
scientists do not know exactly what it is they are searching for.  This is in contrast to 
engineering where it is usual to know the problem for which an answer is sought. This 
poses a problem for a would-be simulator of the social and cognitive processes that 
contribute to science – how can one simulate creative discovery of the unknown? 

The answer I have chosen is to use a formal system (logic) as the representation of 
knowledge, so that the agents work on the logical structures to produce new structures 
(theorems in the logical sense), but where it is impossible to know in advance how 
useful these will be. This decision has distinct consequences both in terms of the 
possibilities and limitations of the model and in terms of the assumptions on which it 
relies.  These will be discussed later.  This can be seen as following [17]. 

Thus the universe of knowledge that the agents will explore in this simulation is 
the set of inferable formal sentences derivable from a given set of initial axioms.  For 
ease of implementation I have restricted my self to logics formalisable as Hilbert 
Systems (that is, ones with a set of axioms and a single rule of inference, Modus 
Ponens, which is recursively applied, see an introduction to logic, e.g. [4]).  The 
agents can produce new sentences by applying existing sentences to other sentences 
using Modus Ponens (MP).  The form of this is if you know A  and you know 

BA → then you can also conclude B  (written BBAA =→ |, ).  An example of 

this is: when A  is )()(( aaaa →→→  and B  is )( aa → : from 

)()(( aaaa →→→  and bbaa →→→ ))((  we can infer )( aa → .  This 

is illustrated in Figure 2. 



 

bbaa →→→ ))((

)()(( aaaa →→→

BA →  (Major Premise) 

A (Minor Premise) 

)( aa →

B (Inference) 
 

Figure 2. An illustration of the working of MP 

The agents thus have the task of discovering new formal sentences.  The 
advantages of this structure are that: (1) future developments from any item of 
knowledge are not known in advance; (2) knowledge is not only useful as an end in 
itself but can be used as a tool, acting upon other knowledge to produce new 
knowledge (as the major premise in MP, the A in Figure 2); (3) the programmer of the 
simulation does not necessarily know how one gets to any given theorem of the 
system, which reduces the temptation to bias the simulation to get specific results; (4) 
the task is suitably hard, as the development of automatic theorem-provers shows. 

In order to set up the field of knowledge that the agents will collectively explore 
the simulator needs to list the symbols being used and list the axioms of the relevant 
logic.  Optionally the simulator can also list a number of known theorems that are 
considered important by logicians and give them a value, though how one derives 
these is not needed to be specified (this is for the agents to find out).  These ‘ target 
theorems’  are unknown to the agents until they discover them.  They represent (in the 
loosest possible way) useful technologies that may come out of science.  Counting 
how many of these have been discovered (and the total value of their ‘worth’ ) is an 
indication of the effectiveness of the collective discover effort, and can be a better 
measure that simply counting how many new sentences have been discovered since it 
is easy to develop trivial elaborations of already known sentences. 

2.4 The Agents 

In this simulation the agents have a very simple-minded approach to the production of 
new knowledge: agents select two items in its own store of knowledge and apply the 
MP rule to it, which may or may not result in a new item of knowledge which is 
added to their store.  Each agent has two private stores of knowledge: firstly, a store 
of formal sentences that are candidates as the minor premises for the MP rule and 



secondly, store composed of candidates for the major premises.  The former roughly 
corresponds to the primary knowledge of a scientist and the second as the set of 
techniques of the agent since it determines which transformations can be applied to 
which items and what can be produced.   

Each time period the agent does the following: 
1. Decide what new items of knowledge (both major and minor) to add to its 

private store from the published set, also which to drop. 
2. Decide which major premise and what set of minor premises it will try with the 

MP rule and add any results to its (minor) store. 
3. Decide which of its private knowledge (that is not already public) it will submit 

to the journal. 
There are obviously many different ways of making these decisions.  Each of these 

ways will have a (varying) impact upon the development of the collective knowledge.  
In addition to the above, gradual, update policy if the agent fails to discover any new 
sentences during a given number of consecutive time periods it may ‘panic’  and 
completely replace one of its stores with a new set of sentences. 

Key parameters and setting of the agent are as follows.  For each of its private 
knowledge stores (minor and major) the update policy includes the following: its size; 
the rate at which it adds or drops knowledge from this store; how it does either the 
addition; the dropping; or the panic replacement (at random/probabilistically the 
best/the best judge either on raw past fertility or past fertility with a bias towards 
simplicity); whether it panics and how long it endures lack of success before 
panicking; which to try (the best/probabilistically the best/untried/random); and how 
it judges what it knows (personal fertility/lack of failure to produce new knowledge). 
Also its submission policy: whether it submits all novel (i.e. unpublished) sentences 
to the journal or only the simplest/best ones. 

2.5 The Journal 

The journal (the Journal of Artificial Sentences and Successful Syllogisms) is the 
gatekeeper to the repository of public knowledge.  The key aspect of the journal is the 
criteria it uses for assessing the items submitted to it, so as to decided what (if any) it 
will publish.  This occurs in three basic stages: the short-listing of those that met basic 
criteria; the evaluation of those short listed; and their ranking.  The journal then 
published a selection of the top n in the ranking (if there were more than n short 
listed), otherwise all of them.  This final selection could be the best (from the top); 
probabilistically on the weighted score (the higher the score the more likely it is to be 
selected); randomly or simply all of them.  The evaluation of the submissions was 
done as a weighted sum of scores for a number of aspects: the number of variables in 
the sentence, its brevity, the extent to which it shortens sentences when used in MP, 
and the past success of the author.  The weights and selection policies can be set by 
the programmer. 



2.6 Methods of evaluation 

Key to many of the decisions made by the agents or the journal is the evaluation of 
the existing knowledge.  Ultimately this can be considered as a guess at the future 
usefulness of that knowledge, in terms of either: its productivity in producing new 
knowledge; reaching the hidden ‘ target theorems’ ; or in getting published.  This may 
be done in a number of ways.  One way is by looking at the historical record of how 
productive the sentence has been in the past in resulting in new published knowledge 
(this can be done in a recursive way to value sentences that have produced productive 
sentences etc.).  Another way is to look at the most published agents and see what 
knowledge they have used (in published work).  Other ways include considering 
features of the sentences themselves, for example measures of their simplicity (how 
many variables they have, how long they are, to what extent the sentence results in a 
shortening of sentences when applied using MP, etc.) 

 

3 Preliminary Results 
At the time of writing only preliminary results are available, which explore only a 
very small proportion of the possibilities inherent in this model.   

Many of the settings do affect the outcomes to a significant degree.  However 
many which increase the short-term success (measured in a number of different ways) 
of the scientific progress also have the effect of reducing the longer-term maintenance 
of new results.  Thus, for example, adding new sentences at random to an agent’s 
private knowledge (i.e. regardless of the agent’s evaluation of sentences) decreased 
the short-term level of discovery markedly, but then that level of discovery lasted a 
longer time.  In contrast where agents follow other agents closely (preferentially 
adding sentences used successfully by others) results followed much more quickly to 
begin with but then petered out to zero after 40-60 time periods (only then deviating 
from zero when an agent panicked and hit lucky with its new set of knowledge).  Such 
a result would indicate that a process of fairly frequent, but collective revolution was 
one of the most efficient collective modes of discovery. 

In general most of the targeted sentences were either discovered very soon, or 
never.  This suggests that “deep”  sentences (those difficult to reach in this collective 
but individually stupid manner) require guidance from a deeper knowledge of the 
individual logics concerned, and is not so amenable to a generic approach (collective 
or otherwise).  

3.1 Varying the rate of publication 

The set of results I will exhibit here are those concerning the effect of the journal’s 
policy on the whole discovery enterprise.  The number selected by the journal to 
publish were varied from the set { 1, 2, 3,…,10}  in 250 independent runs with 20 
agents and 50 iterations.  The journal selected according to a number of factors, which 
were (in order of importance): the extent to which a formula had the effect of 



shortening formula when applied as the major premis in MP; the shortness of the 
formula itself; the past publishing success of the author; and the fewness of the 
number of distinct variables in the formula. The journal ranks all submissions 
according to a score composed of a weighted sum representing the former priorities.  
Agents submit all formula they discover to the journal if they have not been 
previously published.  Each agent has a store of 4 major premises and 27 minor 
premises and tries 9 different combinations of major and minor premises with MP 
each iteration. Generally agents change 1 major and 2 minor premises each time.  
New major premises are chosen probibilistically according to a formula’s past fertility 
in producing formula that are published.  Minor premises are chosen at random.  If an 
agent is completely unsuccessful for a certain length of time they panic and replace all 
of their premises with new ones.  The exact settings are those listed in section 6.1 in 
the appendix, and were those found in unstructured experimentation to be one of the 
more productive settings for agent behaviour. 

The journal was never short of material to publish even when it was publishing 10 
formulae each iteration.  Thus the rate of publishing is directly related to the size of 
the body of publically known formula accessible to agents, as is shown in Figure 3. 
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Figure 3. Total number of formulas publically known at each iteration (averaged over 25 runs) 
for different journal publication rates (njp) 

However, this does not mean that a higher publication rate results in finding more 
useful knowledge, for this does not tell us how useful these are.  The system was 
given a list of 110 target theorems – those listed as significant in logic textbooks.  
Figure 4 shows the average number of these theorems that the system discovers for 
different publication rates (averaged over 25 runs).  The publication rate did not make 
a big difference to the number of discovered targets and that almost all discovery 



occurred early on.  Usually 11-12 targets were found.  Only once 20 were found at 
publication rate of 2 (this explains why this line is higher than the others). 
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Figure 4. Total number of target formulas discovered (averaged over 25 runs) for different 
journal publication rates (njp) 

What is interesting is that this discovery rate was fairly independent of the number 
of submissions to the journal.  Roughly, the higher the publication rate, the lower the 
number of submissions as Figure 5 shows.  Whilst at first sight this seems counter-
intuitive, it is less so given that the more knowledge has been published, the more 
difficult it is to find something new to submit.  Although in each case the system did 
learn to find very many of the target formulae.  Clearly, in this particular case, 
published knowledge was not so useful in producing new kinds of knowledge. 
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Figure 5. Total number of formulas submitted at each iteration (averaged over 25 runs) for 
different journal publication rates (njp) 

Also interesting is the disparity between agents in terms of the number of new 
formula discovered (i.e. unpublished and not known by the agent concerned).  Whilst 
initially a higher publication rate meant less disparity between agents, after a while 
some agents learnt to do so much better than others and dominate (Figure 6). 
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Figure 6. Spread (standard deviation) of the number of unpublished formula found by agents 
each iteration (averaged over 25 runs) for different journal publication rates (njp) 



Now to look at a particular run (the one which discovered 20 formulae).  Figure 7 
shows the number discovered the 20 agents – the  thickness of each band represents 
the number that agent found.  Note the variation in terms consistency in performance. 
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Figure 7. The number of unpublished formula found by each agent in a single run (each agent is 
represented by a single ‘band’  in the chart, the best on average at the bottom) 

Figure 8 shows the average and the standard deviation of the number discovered by 
each agent in the same run as above.  The number generally increases, and the 
standard deviation (in terms of raw discovery) tends to increase.  It may be that the 
initial diversity facilitated the early, relatively high target discovery rate. 
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Figure 8. The average number of unpublished formula found by each agent in the particular run 
(average is show by the circles and the vertical lines show +/- one standard deviation) 

The purpose of these results is not to conclusively show anything in particular 
about how many papers a real journal should publish, or even how many might be 
optimal.  Rather it is to show how such a set-up can illuminate and explore such 
questions. 

4 Discussion 

4.1 The Possibility of Limited Validation 

Following [10], it may be possible to compare the structure of the published 
knowledge that results in this simulation (i.e. which authors/items are derived from 
which previous items by which authors) might be compared with the structure found 
in citation indexes such ISI using a number of measures, statistics or structural 
comparisons.  Unfortunately negotiations with ISI indicate that they are only prepared 
to part with the structural information of their databases (suitably anonymised) for 
rather large quantities of money (i.e. around $30000).  If anyone knows of an 
alternative source, please contact the author. 



4.2 Limitation and Extensions 

Clearly many of the limitations in this simulation are arbitrary:  Thus I list a few 
possible extensions as examples: 

• decision methods of arbitrary complexity can be implemented in agents 
(indeed these methods could themselves be evolved by GP) – in particular 
they might do more reasoning about causality [22]; 

• there could be many journals so that the: prestige of a journal; its topics; its 
impacts and the quality of its submissions could be allowed to co-develop 
inside the simulation;   

• instead of inferring new knowledge the agents could hypothesise and test 
candidate sentences performing tests on the logical semantics (e.g. a row of 
the truth tables in classical logic) – this would introduce levels of uncertainty 
as to the reliability of any particular item of knowledge; 

• a peer review system could be implemented whereby reviewers are selected 
depending on their past publishing success and impact; they could use their 
own experience of what is useful as their criteria for judging entries and their 
own tests; and items could be selected resulting on the votes of reviewers; 

• informal social networks could be introduce to pass knowledge from agent to 
agent other than via official journals; 

• agents should be allowed to reproduce in terms of the students they teach and 
retire after a suitable time (or if they are spectacularly unsuccessful). 

More fundamentally the present structure of the simulation assumes that there is 
some independent ‘correct’  knowledge to be discovered and that it is checkable.  This 
could be corrected by providing some database of atomic facts (e.g. the linkage 
structure of part of the web) and then hypotheses about these could be attempted to be 
induced (as in inductive data-mining techniques).  The journal (or journals) would not 
be able to 100% check the veracity of any knowledge but have to rely on some 
fallible process to come to a judgement upon the knowledge.  However, a 
disadvantage of such an approach is that it would lack the tight inter-dependency of 
knowledge that seems to be such a characteristic of some sciences1. 

4.3 Relationship with Distributed Theorem Proving (DTP) 

The simulation is a forward-chaining theorem prover, and can be seen as an answer to 
[8] since it could be truly distributed.  However it is a very inefficient one – it is 
deliberately generic in that it has not been ‘ tuned’  for performance (by using deep 
properties of the particular logic being investigated), since this is not its goal.  Despite 
this, lessons learned in this simulation do have potential in terms of informing the 
design of distributed theorem provers and vice versa from what is discovered about 
efficient DTP to this simulation (and potentially science itself2). 

                                                           
1 Of course it may be that this is more appropriate for the social sciences. 
2 One can but dream! 



OTTER [26], a particular and quite successful theorem prover is quite close to the 
how a single agent works in the above simulation.  It has a list of candidate minor and 
major premises and works on these to extend the set of known sentences until it 
reaches the target theorems.  It allows for a large range of techniques in re-writing 
formulas, guiding search and applying rules that are not touched upon here. 

4.4 Key Questions and Issues 

Perhaps most the important aspect of this paper is that it shows how a host of 
important issues and questions concerning the social processes of science (and 
science-like processes) may be investigated.  Is Feyerabend’s thesis that any imposed 
method for constructing scientific hypotheses is counterproductive [7], and the best 
way forward is “anything goes”?  To what extent does the particular formal system 
affect the progress in any particular field [5].  In what circumstances and in what 
ways can inter-scientist processes contribute to the reliability (or otherwise) of the 
knowledge produced [9]?  Is it helpful to have an inviolate core of unquestioned 
truths and techniques in a field or is it better that everything is open to revision [15]?  
Do scientists, in effect, create blind variations to then be tested as suggested in [2]?    
Are scientific norms the key characteristic that distinguishes science from other 
human institutions [19]? When is it better to use a simplicity bias in the search for 
useful knowledge [6]?  Answers to these questions may be suggested in functional 
terms by studying simulation models on the lines of the one discussed. 

4.5 Conclusion 

I hope to have shown how it is possible to capture some aspects of the social 
processes that contribute to the construction of science.  Such modelling has the 
potential to intermediate between observations concerning how science works and 
areas of distributed knowledge discovery in computer science, e.g. automated theorem 
proving. It could help sort out the roles of the different processes in science 
confirming or disconfirming philosophical speculations as well as provide productive 
ways to parallelise computational tasks such as theorem proving. 
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6 Appendix 

6.1 Parameter settings 

addRat eMaj or  = 1 
dr opRat eMaj or  = 1 

addRat eMi nor  = 2 
dr opRat eMi nor  = 2 



numI ni t i al SAgent s = 20 
maxI t er at i on = 50 
maxRun = 250 

numMaj or  = 4 
numMi nor  = 27 

i nt er al Scor eDecay = 0. 9 
f er t i l i t yDecay = 0. 9 
numToTr y = 9 
pani cSoonTi me = 4 
pani cLat er Ti me = 12 

maxNumber ToPubl i sh = [ 1, …10]  

mi nNumber Of Var i abl esFor Publ i cat i on = 1 
shor t eni ngWei ght  = 0. 1 
shor t nessWei ght  = 0. 01 
sour ceWei ght  = 0. 001 
numVar i abl esWei ght  = 0. 0001 

model Behavi our Li st  = [ f er t i l i t y I sI nver seLengt h 
mat chTar get Gener i cal l y publ i shBest ]  

behavi our Li st  = [ submi t Al l ]  

maj or Behavi our Li st  = [ addFer t i l ePr ob dr opWor st  
f eedbackOnUsedFai l ur e pani cLat er  r epl aceBest I f Bad t r yBest ]  

mi nor Behavi our Li st  = [ addRandom dr opWor st Pr ob 
f eedbackOnFer t i l i t y  pani cSoon r epl acePr obFer t i l eI f Bad 
t r yUnt r i ed]  

6.2 Sample output from selected run 

I t er at i on 1 

I t er at i on 2 

agent  2 f ound ' - >'  A ( ' - >'  A ( ' - >'  A A) )  
agent  2 f ound ' - >'  ( ' - >'  A B)  ( ' - >'  ( ' - >'  C B)  ( ' - >'  A ( ' - >'  
C B) ) )  
agent  2 f ound ' - >'  ( ' - >'  A B)  ( ' - >'  ( ' - >'  B A)  ( ' - >'  B A) )  
agent  2 f ound ' - >'  ( ' - >'  A B)  ( ' - >'  ( ' - >'  A B)  ( ' - >'  A B) )  
agent  2 f ound ' - >'  ( ' - >'  A A)  ( ' - >'  A A)  
agent  2 f ound ' - >'  ( ' - >'  A A)  ( ' - >'  ( ' - >'  A A)  ( ' - >'  A A) )  
agent  6 f ound ' - >'  A A 
agent  6 f ound ' - >'  ( ' - >'  A A)  ( ' - >'  A A)  
agent  10 f ound ' - >'  ( ' - >'  A A)  ( ' - >'  A A)  
agent  12 f ound ' - >'  A ( ' - >'  A ( ' - >'  A A) )  
agent  12 f ound ' - >'  ( ' - >'  A B)  ( ' - >'  ( ' - >'  C B)  ( ' - >'  A ( ' - >'  
C B) ) )  
agent  12 f ound ' - >'  ( ' - >'  A B)  ( ' - >'  ( ' - >'  B A)  ( ' - >'  B A) )  
agent  12 f ound ' - >'  ( ' - >'  A B)  ( ' - >'  ( ' - >'  A B)  ( ' - >'  A B) )  
agent  12 f ound ' - >'  ( ' - >'  A A)  ( ' - >'  A A)  
agent  12 f ound ' - >'  ( ' - >'  A A)  ( ' - >'  ( ' - >'  A A)  ( ' - >'  A A) )  
agent  18 f ound ' - >'  ( ' - >'  A A)  ( ' - >'  A A)  
agent  19 f ound v A ( ' ¬'  A)  
agent  19 f ound ' - >'  ( ' - >'  A B)  ( ' - >'  ( ' - >'  B C)  ( ' - >'  A C) )  
agent  19 f ound ' - >'  ( ' - >'  A A)  ( ' - >'  ( ' - >'  A A)  ( ' - >'  A A) )  
agent  19 f ound ' <- >'  ( ' &'  A ( ' ¬'  A) )  F 

I t er at i on 3 



agent  3 f ound ' - >'  ( ' - >'  A ( ' - >'  B C) )  ( ' - >'  B ( ' - >'  A C) )  
agent  3 f ound ' - >'  ( ' - >'  A ( ' - >'  ( ' - >'  B C)  D) )  ( ' - >'  ( ' - >'  B 
C)  ( ' - >'  A D) )  
agent  6 f ound ' - >'  ( ' - >'  A ( ' - >'  B B) )  ( ' - >'  A ( ' - >'  A ( ' - >'  
B B) ) )  
agent  6 f ound ' - >'  ( ' - >'  A ( ' - >'  A B) )  ( ' - >'  A B)  
agent  6 f ound ' - >'  ( ' - >'  A B)  ( ' - >'  ( ' - >'  B A)  ( ' - >'  A B) )  
agent  17 f ound ' - >'  ( ' - >'  A ( ' - >'  A B) )  ( ' - >'  A B)  
agent  19 f ound ' - >'  ( ' - >'  A B)  ( ' - >'  ( ' - >'  C A)  ( ' - >'  C B) )  
agent  19 f ound ' - >'  ( ' - >'  A B)  ( ' - >'  ( ' - >'  C ( ' - >'  ( ' - >'  A B)  
D) )  ( ' - >'  C D) )  

I t er at i on 4 

agent  7 f ound ' - >'  ( ' - >'  A B)  ( ' - >'  ( ' - >'  ( ' - >'  A B)  C)  C)  
agent  7 f ound ' - >'  A ( ' - >'  ( ' - >'  A B)  B)  
agent  13 f ound ' - >'  ( ' - >'  A ( ' ¬'  A) )  ( ' ¬'  A)  
agent  15 f ound ' - >'  ( ' - >'  A ( ' ¬'  A) )  ( ' ¬'  A)  

I t er at i on 5 

I t er at i on 6 

Et c.  


